27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Contents 1. MEG experiment 2. LXe Purification 3. Prototype Performance 4. Expected Performance 5. Toward the MEG experiment.

Slides:



Advertisements
Similar presentations
MEG 実験 液体キセノンカロリメータ におけるエネルギー分解能の追究 東大素粒子センター 金子大輔 他 MEG コラボレーション.
Advertisements

Satoshi Mihara for the   e  collaboration, BV33 at PSI, Jan 2002 Report on the Progress for   e  Experiment Satoshi Mihara ICEPP, Univ. of Tokyo.
Prototype of the Daya Bay Neutrino Detector Wang Zhimin IHEP, Daya Bay.
20/Feb/2004K.Ozone1 TERAS analysis update 1.Compton Spectrum estimation 2.Energy resolution 3.Summary.
1 Satoshi Mihara for the   e  collaboration, muegamma review at PSI, Jan 2003 Photon Detector ICEPP, Univ. of Tokyo Satoshi Mihara.
KEK beam test H. Sakamoto. Purpose To optimize a concentration of the second dopant for scintillating fibers KEK beam test to study light yields for various.
Liquid Xenon Carlorimetry at the MEG Experiment Satoshi MIHARA Univ. of Tokyo.
Tagger Electronics Part 1: tagger focal plane microscope Part 2: tagger fixed array Part 3: trigger and digitization Richard Jones, University of Connecticut.
Gamma Spectroscopy HPT TVAN Technical Training
XEC Hardware Status MEG Review Meeting 2010 Liquid Xenon Group.
Yasuhiro NISHIMURA Hiroaki NATORI The University of Tokyo MEG collaboration Outline  → e  and MEG experiment Design of detector Calibration Performance.
Update on the Gas Ring Imaging Cherenkov (GRINCH) Detector for A 1 n using BigBite Todd Averett Department of Physics The College of William and Mary Williamsburg,
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
Wataru Ootani, ICEPP, Univ. of Tokyo SORMA X, May 21, 2002 Development of liquid xenon scintillation detector for new experiment to search for   e 
24/Mar/2005 K. Ozone The 60th annual JPS meeting @ Noda Campus, Tokyo University of Science Outline 1. MEG experiment 2. LCS beam test 3. Performance evaluation.
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Malte HildebrandtMEG Review Meeting, 14th February 2007 Report of Run Coordinator Run 2006 Summary Malte Hildebrandt MEG Review Meeting, 14th February.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
Satoshi Mihara ICEPP, Univ. of Tokyo Feb MEG Review Meeting 1 CEX beam test at piE1 Satoshi Mihara.
Liquid Xenon Photon Detector Feb MEG Review Meeting Liquid Xenon Detector Part I CEX beam test at piE1 Oct-Dec/03 –Hardware operation status –Analysis.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Report of the NTPC Test Experiment in 2007Sep and Others Yohei Nakatsugawa.
1/41 LXe Beam Test Result CEX beam test 2004 Cryogenic Equipment Preparation Status Liquid Xenon Photon Detector Group.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
Analysis of PSI beam test R.Sawada 09/Feb/2004 MEG collaboration R.Sawada 09/Feb/2004 MEG collaboration
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
MEG 実験用液体キセノン検出器の現状 東京大学素粒子物理国際研究センター 澤田龍 他 MEG カロリメータグループ 2007 年 9 月 24 日 日本物理学会 第 62 回年次大会 北海道大学.
1 Satoshi Mihara for the   e  collaboration, review meeting at PSI, Jul 2002 Photon Detector Satoshi Mihara ICEPP, Univ. of Tokyo 1.Large Prototype.
Dec. 8th, 2000NOON A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.
Liquid Xenon Calorimeter Analysis R.Sawada on behalf of the MEG LXe analysis group 17/Feb/2009.
Neutron detection in LHe ( HMI run 2004) R.Golub, E. Korobkina, J. Zou M. Hayden, G. Archibold J. Boissevain, W.S.Wilburn C. Gould.
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, May 25, 2004 Purpose:  Provide pion – muon separation (muon veto)
MEG 実験 背景ガンマ線の研究 澤田 龍 MEG コラボーレーション 東京大学素粒子物理国際研究センター 2010 年 9 月 11 日 日本物理学会 2010 年秋季大会 九州工業大学戸畑キャンパス.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
30/Mar/2003 K. Ozone Symposium "LXe detectors and new applications" in JPS meeting @ Tohoku Gakuin Univ. Tsuchitoi Campus, Sendai, Japan Contents 1. MEG.
Liquid Xe detector for m +  e + g search Kenji Ozone ( ICEPP, Univ. of Tokyo, Japan ) Introduction prototype R&D ー PMTs ー small & large type summary Outline.
1st Year Talk1 PEP Violation Analysis with NEMO3 and Calorimeter R&D for SuperNEMO Anastasia Freshville.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
Abstract Several models of elementary particle physics beyond the Standard Model, predict the existence of neutral particles that can decay in jets of.
Collection of Photoelectrons from a CsI Photocathode in Triple GEM Detectors C. Woody B.Azmuon 1, A Caccavano 1, Z.Citron 2, M.Durham 2, T.Hemmick 2, J.Kamin.
R&D works on Liquid Xenon Photon Detector for μ  e γ experiment at PSI Satoshi Mihara ICEPP, Univ. of Tokyo Outline Introduction Prototype R&D works Summary.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Forschungszentrum Karlsruhe Erice, 7th July th International School for Cosmic Rays Astrophysics Motivation Energy Reconstruction Air Fluorescence.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
1 PMT Univ. of Tokyo Yasuko HISAMATSU ICEPP, MEG Collaboration meeting Feb. 10th, 2004.
1 PMT Univ. of Tokyo Yasuko HISAMATSU ICEPP, The University of Tokyo MEG VRVS meeting Jan. 20th, 2004.
The Status of Hyperball-J Akio Sasaki Dept. of Phys. Tohoku Univ. 23/9/2011.
g beam test of the Liquid Xe calorimeter for the MEG experiment
ICARUS T600: low energy electrons
The Electromagnetic calorimeter of the MEG Experiment
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Liquid Xenon Detector for the MEG Experiment
New experiment to search for mge g at PSI status and prospects
MEG Experiment at PSI R&D of Liquid Xenon Photon Detector
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
MEG II実験 液体キセノン検出器の建設状況
Decay Angular Measurement in the MEG Experiment
New Results from the MEG Experiment
Presentation transcript:

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Contents 1. MEG experiment 2. LXe Purification 3. Prototype Performance 4. Expected Performance 5. Toward the MEG experiment 6. Summary Liquid Xenon Scintillation Detector for the New   e  Search Experiment Kenji Ozone ( ICEPP, Univ. of Tokyo, Japan )

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Physics Motivation and event signature SU(5) SUSY  LFV process  Forbidden in the SM  Sensitive to the new physics such as SUSY-GUT, SUSY-seesaw etc.  Our goal : Br(  ->e  )> ~ Present limit < 1.2x (MEGA) Clear 2-body kinematics  E e = E  = 52.8 MeV  Back to back event  Time coincidence

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 MEG Detector LXe scintillation detector Drift chamber Timing Counter Compensation Coil COBRA Magnet Surface  beam 262cm 252cm  Initial goal at , finally to

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Signal and backgrounds   +  e +  signal –Back to Back –E e =E  =52.8MeV  Two major Backgrounds –Accidental overlap  e +  from Michel decay   from radiative decay, e + -annihilation in flight Down to ~ –Radiative  + decay Down to <  e  e  e  ?

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Polarized muon beam Muons from “Surface” of  + production target  + decay at rest near the surface Primary Proton  + stop  p   29.8MeV/c  100% polarized  + /e + separator MEG detector Primary Proton Quadruple magnets Beam Transport Solenoid Bending magnets Degrader  E5  + Beamline target

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 COBRA spectrometer COBRA magnet was already installed into the  E5 area in PSI. Constant bending radius independent of the emission angle e + momentum easily used at trigger level Michel positrons are quickly swept out reduce the hit rate for stable operation

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Gamma-ray detector in MEG detector The gamma-ray detector is a key detector in MEG experiment. Positron spectrometer can’t distinguish Michel positrons from ones of MEG event. Photon yield per decay Gamma-ray energy / 52.8MeV On the other hand, 52.8-MeV gamma ray in gamma- ray detector is only MEG event.

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Why Xe ?  High density and High light yield 1 st conversion depth: 2 cm ~ 10 cm Wph: 21.7 eV (75% of NaI(Tl))  Good Energy, Position, Time resolutions  Fast Decay reduces pile-ups. τ(recombi.) = 45 nsec Low temperature: 165 K requires refrigerator and special PMT Wavelength: ~178 nm requires VUV-sensitive PMT Light absorption requires contaminant level of 100 ppb (water) T.Doke and K.Masuda, Nucl. Instr. And Meth.A420 (1999) 62.

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 LXe scintillation detector for the MEG experiment g Detector concepts Observe as many photoelectrons as possible with a great accuracy.  Many PMTs are directly immersed in LXe. Kamiokande-like detector.  Thin material on the incident face. Al honeycomb, compact PMT… 52.8MeV  800 liter liquid xenon  120 o, |cos  |<0.35, depth~50cm  830 PMTs 67cm Energy Total number of photons Timing Arrival time of photons Position Next page……

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Position reconstruction 52.8MeV  LXe  Position Reconstructed by outputs of 4PMTs ~ 10 PMTs Conversion position (X,Y) weighted mean in a region Conversion depth spread of distribution

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Prototype LXe detectors The strategy to develop LXe detector  10-liter prototype ( 2.34L eff. vol. ) verified the principle LXe detector  100-liter prototype ( 68.6L eff. vol. ) Theme of my doctoral thesis

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 100-liter prototype ■ 68.6-liter active volume ■ 228 PMTs ● a source ( 241 Am) x4 PMT calibration (QE measurement) Stability monitor ● LED x8 PMT calibration (gain adjustment) ● cosmic ray muon counter (3pairs) Light yield monitor 372mm X 372mm X 496mm

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 100-liter prototype Prototype LXe Scintillation Detector 1k liter LN2 tank Compresser for refrigerator Xe line Student A window KEK east counter hall π 2 area 2002 Spring Student B

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Purpose of 100-liter prototype Construction of a larger prototype of LXe scintillation detector Never constructed such a large detector. Test for detector components PMTs, feed-through connectors, Cryostat, PMT holder, DAQ, Slow-control system, Purification system, … long-term stable operation Pulse tube Refrigerator, monitoring of temperature and pressure Performance Test for higher energy gamma rays Resolutions of energy, time, and position for 40 MeV g

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 PMT (HAMAMATSU R6041Q) Features 2.5-mmt quartz window 2.5-mmt quartz window Q.E.: 6% in LXe (TYP) Q.E.: 6% in LXe (TYP) (includes collection efficiency) (includes collection efficiency) Collection eff.: 79% (TYP) Collection eff.: 79% (TYP) 3-atm withstanding pressure 3-atm withstanding pressure Gain: 10 6 (900V supplied TYP) Gain: 10 6 (900V supplied TYP) Metal Channel Dynode thin and compact Metal Channel Dynode thin and compact TTS: 750 psec (TYP) TTS: 750 psec (TYP) Works stably within a fluctuation of 0.5 % at 165K Works stably within a fluctuation of 0.5 % at 165K 57 mm 32 mm

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Gain adjustment with LEDs  Assume the LED output obeys Poisson distribution.  The PMT outputs according to the LED intensity. LED 200fC/ch: charge,electron elementary: gain,:  c q g spectrum, LED ofMean : spectrum, LED ofMean: spectrum, pedestal ofdeviation: spectrum, LED ofdeviation: 0 0 M M  

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Q.E. estimation with a particle data 1. Make MC samples for alpha particle events. (QE = 5.0% fixed) 2. Compare the measured data with MC. Example Data=MC*1.42 QE = 3.5%

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Light yield monitor by cosmic-ray muons Data from cosmic-ray muons is useful for monitoring higher light yield. The cosmic-ray events are triggered with three pairs of counters (7cm x 7cm) above and below the vessel.

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 LXe purification and Absorption length measurement At the early stage, LXe was contaminated…

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Water contamination In principle, Xe scintillation photons are not re-absorbed by xenon atoms. Possible contaminants: water oxygen

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Residual gas analysis H2OH2O O2O2 CO 2 CO, N 2 Xe H2H2 Residual gas after recovering xenon was analyzed with Q-mass spectrometer at room temperature.

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Purification system Purification : ~1200 hours flow rate = 5 liter/min (GXe)

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Growth of scintillation photon yield The light yield was increased for 600 hours. Far PMTs Near PMTs

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Growth of photon yield Npe~25000Npe~85000 a particle data Cosmic-ray m data Npe~300Npe~1400 Before After

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Absorption length estimation l abs is estimated to be 12.0±1.8 cm over 1m (90% C.L.) LXe data were compared with LXe MC samples( l sca ~∞). LXe(data)/MC Before After Before

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Other efforts for pure LXe  Replacement PMT cover: acrylic to Teflon Filler in incident face: Silicon rubber to stycast with glass Filler at the side of PMT holder: acrylic plate to SUS hollow box  Working environment open-air to clean-room  Circulating pump (not yet) gaseous pump to fluid pump

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Energy resolution expected for 52.8 MeV g MC(prototype) l sca =45cm If l abs is over 1m, s u /E ~ 1.2%. Energy distribution was obtained with PCA(principal component analysis) to be fitted with Gaussian with exponential tail. l abs =1m l sca 45cm FWHM uu Response function

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Performance test with 40MeV LCS beam Purpose For 10~40 MeV gamma rays - Energy resolution - Position resolution Evaluate performance for 52.8MeV gamma rays.

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 TERAS Beam AIST Incident g beam  Not monochromatic  Compton edge: 10, 20, 40MeV  collimator: 1 mm φ

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Experimental TERAS

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Experimental exp. room LCS beam

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Incident beam LCS beam

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Incident beam 10MeV 20MeV 40MeV Energy spread becomes narrow by the collimator and the sharpness of the Compton edge is kept. Energy resolution

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Energy Spectrum Depth parameter The spectrum has lower tail. The resolution is evaluated by upper sigma.

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Fitting Expected incident Compton spectrum Response function The spectra were fitted with a convolution of the response function and incident LCS spectrum.

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Energy Resolution at P0 & P9 (update) Depth parameter > % in  for 52.8MeV

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Red circle: (Sum of front outputs) / 2 Depth parameter; Nf := # of PMTs in Reconstructed (x,y); is weighted mean in Vertex Reconstruction depth=4.4cm depth=15.3cm Depth ~ spread of output distribution.

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Difference between true and reconstructed vertex  ~6mm MC Nf 1 st Conversion Depth depth (x, y)

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Event Selection & efficiency Nf(0.5)>2 67% P0

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Fitting Fitted with 2-D Double Gaussian F(x,y) = a(narrow Gaussian) + (1-a)(broad Gaussian), a: ratio

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Position Resolution at P0 & P9(update) ~90% ~10% 3.6~5.0mm (90%) in  8.0~11.1mm (10%) in   for 40 MeV  and for 52.8MeV

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Toward the MEG experiment

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Prototype to final design What’s the difference? Shape box -> C-shape checked by “Mask analysis” Data Q-integrated ADC, discriminator & TDC -> waveform digitizer Calibration

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Mask analysis –Switch off half of the PMTs in the front face Use 4x4 PMTs out of 6x6 PMTs –Switch off PMTs on the side walls  –Compton Edge shifts by 6.2% –Resolutions are almost same (1.84 to 1.85% in  ) before and after switching off. –1 plane off  2.05% in  –2 planes off  2.22% in  –3, 4 planes off  > 3% in 

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Waveform analysis & high QE PMT 2.5GHZ sampling Energy and timing resolution will be improved hopefully. In particular pile-up rejection power will be up. QE: 5% to 15% ave.

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Calibration in MEG experiment Absolute calibration Energy (once a week/month…) -  0 ->  decay Position - radiative muon decay Timing - radiative muon decay relative adjustment (daily) - wire alpha source, cosmic-ray muon

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Energy calibration with  0 decay  - (at rest) + p ->  0 + n,  0 (28MeV) ->  54.9MeV<E  <82.9MeV) Almost monochromatic  is available by selecting opening angle. 170°175° 54.9MeV 82.9MeV Opening angle(deg) Energy (MeV) Energy (MeV) 0.3 MeV FWHM 1.3 MeV FWHM

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 test with  0 PSI  8x8 NaI array opposite to Large Prototype Xe detector to know opening angle each NaI is 6.3x6.3x40.6cm3  Liquid H 2 target

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Energy Resolution 4.5% FWHM Energy 54.9 MeV  This satisfies the requirement Energy resolution in right  (%) preliminary TERAS data PSI data Right  is a good function of energy

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Proton beam: 1.8mA Pion Rate: 2x10 8  - /sec Collimate: 2PMTs x 2PMTs ~ 150cm 2 20  /sec # of PMTs on incident face: 216PMTs required: 30,000 evts/run takes 81,000sec~ 1day Energy Calibration Anti Counter up tilt down Support structure: straightly up and down Tilt mechanism at every height for NaI front to face target direction. target 0000   55, 83MeV

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Expected Performance

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Expected Performance Generate background events –Accidental overlap  e +  from Michel decay   from radiative decay, e + -annihilation in flight  Pile-ups –Radiative  + decay ff f  B acc ∝ δ E e ・ δ t e  ・ (δ E  ) 2 ・ (δ  e  ) 2 ・ N 

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 90 % C.L. Sensitivity 5.8x x10 7 Solid angle:  /4  =0.09 Positron detection efficiency:  e =0.90 Gamma detection efficiency:   =0.67 Event selection efficiency:  sel =0.7 Gamma energy resolution: 5.2% Gamma position resolution: 4mm-11mm Gamma timing resolution: 179 psec Positron energy resolution: 0.8% Positron timing resolution = 100 psec Positron position resolution = 10.5 mrad

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Decay Angular Measurement  Conditions:   + beam intensity : 4.5x10 7 /sec  beam time : 5.2x10 7 sec (2 years)  P  =97% (from MEGA) MEG search with sensitivity down to with depolarized μ+ beam Muon Stopping target: polyethylene Define the model of the new physics with polarized μ+ beam Muon Stopping target: graphite, Be, Al,…

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 SUSY models and Asymmetry  SU(5) SUSY-GUT A = +1 (A L  0, A R =0)  SO(10) SUSY-GUT A  0 (A L  A R )  MSSM with R A = -1 (A L =0, A R  0) Detector acceptance Y.Kuno et al., Phys.Rev.Lett. 77 (1996) 434 dN(  +  e +  ) / dcos  e  Br(  +  e +  )x(1+AP  cos  e )/2 Asymmetric Parameter;A = (|A L | 2 -|A R | 2 )/(|A L | 2 +|A R | 2 )

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Background distribution Radiative  + decay –N(  +  e +  ) ∝ (1+P  cos  e ) e + from Michel decay ∝ (1+P  cos  e ) from radiative decay ∝ (1+P  cos   ) Back to back :   =  e -  ⇒ Accidental B.G. ∝ (1-P   cos 2  e )  ~ 11% P  =97%, cos  e =0.35 Detector acceptance

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 68%, 90%, 95% C.L. Sensitive Regions 68.3%90.0% 95.4% A=+1 B(  +  e +  ) = Poisson-distributed  2 =  [2(N obs -N exp )+N obs log e (N obs /N exp )] Assumptions

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Summary  We proposed a novel LXe scintillation detector for the MEG experiment.  A 100-liter detector was constructed to design the final detector.  The components such as monitoring system, PMTs, and, especially the cryostat, worked as expected.  We developed a purification technique and absorption length reached over 1m at 90 % C.L.  The detector performance was estimated to be  E /E=2%,  pos >4mm for 52.8 MeV in MEG experiment.  Sensitivity of MEG detector was estimated to be 5.8x %C.L.  The final detector was already designed, and is ready for construction toward the physics run in 2006.

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Reachable sensitivity by MEG experiment Physics run in x % C.L.

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 End of Slides

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 PMT calibration Gain ∝ (HV) 9

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 LXe operation  Evacuating: ~10 days downs to an order of Pa.  Pre-cooling: 1 day The 0.2 MPa GXe in the inner vessel is cooled to 165 K in advance.  Liquefaction: 2 days Liquefied with LN 2 cooling pipe. GXe is purified before entering the vessel. The pressure is kept <0.13 MPa.  LXe-keeping: 2000 hours max. Mainly by refrigerator. By LN 2 if over 0.13 MPa.  Purification : ~1200 hours flow rate = 5 liter/min (GXe)  Recovery: 2 days Cool Xe tank storage with LN 2.  Warming-up: 3 days

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Dustbox The s E is evaluated to be ~1% from the extrapolation to 52.8 MeV. The s t is evaluated to be ~50 psec for 20,000 photoelectrons estimated from the result simulated for 52.8-MeV g. ● 8 LEDs inside PMT holder ● Scan HV to get gain curves for all PMTs

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 10-liter (small) prototype ● g sources ( 137 Cs, 51 Cr, 54 Mn, 88 Y) Resolution evaluation ● a source ( 241 Am) PMT calibration, stability check ● LED PMT calibration ■ 2.34-liter active volume ■ 32 PMTs Purpose First “Kamiokande”-like LXe detector Test for R6041Q in LXe and cryostat for LXe. Estimate of the performance for low energy g rays Energy, time, and position resolutions with < 1.8-MeV g sources. 116mmX116mmX 74mm

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Energy Resolution Fully-contained events in each energy distributions are fitted with an asymmetric Gaussian.

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Position Resolution PMTs are divided into two groups. γ int. positions are calculated in each group and then compared with each other. Events in the central 2cmX2cm area are selected. Position resolution is estimated as s z1-z2 /√2

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 PMTs are divided again into two groups. In each group the average of the time measured by TDC is calculated after slewing correction for each PMT. The time resolution is estimated by taking the difference between two groups. Resolution improves as ~ 1/√Npe FWHM<120 psec for 52.8 MeV g. Time Resolution

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 How much water contamination? data/MCSimulated data Before purification: ~10 ppm After purification: ~100 ppb

27/Jan/2005 K. Ozone 2004 年度博士論文審査会  Constructed the first LXe scintillation detector.  The resolutions are evaluated for low energy g. Energy: 4.2~9.4%, Position: 6.3 ~ 19 mm, Time: ~380 psec (FWHM) If extrapolated to 52.8-MeV, resolutions are be expected: energy; ~1%, position; a few mm, time;~100 psec (FWHM)  Stable operation for the cryostat. PMT output fluctuation: ~ 0.5 %. Summary on Small Prototype

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Absorption length estimation Comparing the two results, the absorption length is estimated to be over 3m (97.8% C.L.). Measured / MC(abs=inf.) MC(abs=var.) / MC(abs=inf.) measured a data/simulated a data simulated data

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Thickness of incidence face PATH A: 0.24 X 0 PATH B: 0.24 X 0 The Most of g -rays transmit to the LXe volume through the incident face.

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Energy Spectrum data MC

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Stability of PMT outputs The a particle data are useful for monitoring the stability of PMTs because it is regarded to be a point-like source. After the completion of the liquefaction, the PMT output is stabilized within 1.5 % in 50 hours. a ±1.5%

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Q.E. estimation with a particle data Compared with the simulated data, the a data in LXe can estimate Q.E.s, which include collection efficiencies of the PMTs.

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Position Resolution at P0 & P9 MC data

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Position Reconstruction depth=4.4cm depth=15.3cm q i : number of p.e. observed by i-th PMT Q f : Total number of p.e. observed by i-th PMT C i : Ratio of overlap of the red circle for i-th PMT Simple weighted mean Local weighted mean

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Position Resolution at P0 & P9(update) MCdata If the range of Nf(0.5) is from 2.0 to 20.0 and fitted with 2-D double Gaussian ~10% ~90% ~10%

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Position Fitting (old) Data; 40 MeV P0 Data; 40 MeV P9 Fitted with 2-D Gaussian

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 MC

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Event Selection Correction 4<Nf(0.5)<13

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Trigger

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Energy Resolution at P0 & P9 (old) MCdata

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Energy Resolution at P0 & P9 (update) MCdata 古い If the range of Nf(0.5) is from 2.0 to 20.0

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Fitting (old) Data; 40 MeV P0 Data; 40 MeV P9 Fitted with 2-D Gaussian

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Vertex Reconstruction depth=4.4cm depth=15.3cm q i : number of p.e. observed by i-th PMT Q f : Total number of p.e. observed by i-th PMT C i : Ratio of overlap of the red circle for i-th PMT Simple weighted mean Local weighted mean

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Sensitive Region for A=+1 Excluded region for each B(  +  e +  A= % 90.0% 95.4% excluded Allowed

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Mask analysis 1 –Switch off half of the PMTs in the front face Use 4x4 PMTs out of 6x6 PMTs –Switch off PMTs on the side walls 

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Mask analysis 2 Only 4x4 PMTs on the front face Switching off half the front PMTs –Compton Edge shifts by 6.2% –Resolutions are almost same (1.84 to 1.85% in  ) before and after switching off. Switching off PMTs on the side wall(s) –1 plane off  2.05% in  –2 planes off  2.22% in  –3, 4 planes off  > 3% in  4 planes off 3 planes off 2 planes off 1 plane off 1/N pe 1/sqrt(N pe ) Number of Photoelectrons

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Mask analysis 3 1 plane off 3 planes off Deterioration of the energy resolution when switching off PMTs is not mainly caused by loss of N pe. PMTs on the side walls compensate 1 st conversion point dependence. Number of Photoelectrons D D

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Mask analysis 4 All PMTs on:  =1.8% Switching off one PMT on the front wall. –the nearest PMT   =2.3% –2 nd nearest PMT   =1.9% –3 rd nearest PMT   =1.9% 300 PMTs on the front face in the final detector –~4/300 = 1.3% loss of acceptance F30 off  =2.3% F22 off  =1.9% F28 off  =1.9%

27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Pile-up rejection Pile-up rejection