Numerical simulations of the magnetorotational instability (MRI) S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP, Cambridge,

Slides:



Advertisements
Similar presentations
Outline: I. Introduction and examples of momentum transport II. Momentum transport physics topics being addressed by CMSO III. Selected highlights and.
Advertisements

Magnetic Chaos and Transport Paul Terry and Leonid Malyshkin, group leaders with active participation from MST group, Chicago group, MRX, Wisconsin astrophysics.
CMSO 2005 Simulation of Gallium experiment * § Aleksandr Obabko Center for Magnetic-Self Organization Department of Astronomy and Astrophysics.
Turbulence in accretion disks Pawel Artymowicz U of Toronto 1. MRI turbulence 2. Some non-MRI turbulence 3. Roles and the dangers of turbulence UCSC Santa.
Topic: Turbulence Lecture by: C.P. Dullemond
Simulating the Extreme Environment Near Luminous Black Hole Sources Omer Blaes University of California, Santa Barbara.
The Vertical Structure of Radiation Dominated Accretion Disks Omer Blaes with Shigenobu Hirose and Julian Krolik.
“The interaction of a giant planet with a disc with MHD turbulence I: The initial turbulent disc models” Papaloizou & Nelson 2003a, MNRAS 339, 923 Brian.
Processes in Protoplanetary Disks Phil Armitage Colorado.
“The interaction of a giant planet with a disc with MHD turbulence II: The interaction of the planet with the disc” Papaloizou & Nelson 2003, MNRAS 339.
Steady Models of Black Hole Accretion Disks including Azimuthal Magnetic Fields Hiroshi Oda (Chiba Univ.) Mami Machida (NAOJ) Kenji Nakamura (Matsue) Ryoji.
SELF-SIMILAR SOLUTIONS OF VISCOUS RESISTIVE ACCRETION FLOWS Jamshid Ghanbari Department of Physics, School of Sciences, Ferdowsi University of Mashhad,
Hubble Fellow Symposium, STScI, 03/10/2014 Xuening Bai Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics Gas Dynamics in.
Direct numerical simulation study of a turbulent stably stratified air flow above the wavy water surface. O. A. Druzhinin, Y. I. Troitskaya Institute of.
General Relativistic MHD Simulations of Black Hole Accretion Disks John F. Hawley University of Virginia Presented at the conference on Ultra-relativistic.
GENERAL RELATIVISTIC MHD SIMULATIONS OF BLACK HOLE ACCRETION with: Kris Beckwith, Jean-Pierre De Villiers, John Hawley, Shigenobu Hirose, Scott Noble,
0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is.
CONNECTING RADIATION TO DYNAMICS THROUGH SIMULATIONS with Omer Blaes, Shigenobu Hirose, Jiming Shi and Jim Stone.
Numerical simulations of the MRI: the effects of dissipation coefficients S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP,
Models of Turbulent Angular Momentum Transport Beyond the  Parameterization Martin Pessah Institute for Advanced Study Workshop on Saturation and Transport.
Review of MHD simulations of accretion disks MHD simulations of disk winds & protostellar jets Describe new Godunov+CT MHD Code Tests Application to MRI.
The Nature of Turbulence in Protoplanetary Disks Jeremy Goodman Princeton University “Astrophysics of Planetary Systems” Harvard.
Plasma Dynamos UCLA January 5th 2009 Steve Cowley, UKAEA Culham and Imperial Thanks to Alex Schekochihin, Russell Kulsrud, Greg Hammett and Mark Rosin.
1 Hantao Ji Princeton Plasma Physics Laboratory Experimentalist Laboratory astrophysics –Reconnection, angular momentum transport, dynamo effect… –Center.
Type I Migration with Stochastic Torques Fred C. Adams & Anthony M. Bloch University of Michigan Fred C. Adams & Anthony M. Bloch University of Michigan.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Turbulence 14 April 2003 Astronomy G Spring 2003 Prof. Mordecai-Mark Mac Low.
Recent advances in Astrophysical MHD Jim Stone Department of Astrophysical Sciences & PACM Princeton University, USA Recent collaborators: Tom Gardiner.
Simulations of Compressible MHD Turbulence in Molecular Clouds Lucy Liuxuan Zhang, CITA / University of Toronto, Chris Matzner,
Effect of Magnetic Helicity on Non-Helical Turbulent Dynamos N. KLEEORIN and I. ROGACHEVSKII Ben-Gurion University of the Negev, Beer Sheva, ISRAEL.
Magnetic Fields and Jet Formation John F. Hawley University of Virginia Workshop on MRI Turbulence June 18 th 2008.
Large scale magnetic fields and Dynamo theory Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008.
Three-dimensional MHD Simulations of Jets from Accretion Disks Hiromitsu Kigure & Kazunari Shibata ApJ in press (astro-ph/ ) Magnetohydrodynamic.
Studies of the MRI with a New Godunov Scheme for MHD: Jim Stone & Tom Gardiner Princeton University Recent collaborators: John Hawley (UVa) Peter Teuben.
Reynolds-Averaged Navier-Stokes Equations -- RANS
Planetesimals in Turbulent Disks Mordecai-Mark Mac Low Chao-Chin Yang American Museum of Natural History Jeffrey S. Oishi University of California at Berkeley.
Overshoot at the base of the solar convection zone What can we learn from numerical simulations? Matthias Rempel HAO / NCAR.
BGU WISAP Spectral and Algebraic Instabilities in Thin Keplerian Disks: I – Linear Theory Edward Liverts Michael Mond Yuri Shtemler.
Richard Rotunno NCAR *Based on:
Magnetic activity in protoplanetary discs Mark Wardle Macquarie University Sydney, Australia Catherine Braiding (Macquarie) Arieh Königl (Chicago) BP Pandey.
Steven A. Balbus Ecole Normale Supérieure Physics Department Paris, France IAS MRI Workshop 16 May 2008 The Magnetorotational Instablity: Simmering Issues.
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
Dynamo theory and magneto-rotational instability Axel Brandenburg (Nordita) seed field primordial (decay) diagnostic interest (CMB) AGN outflows MRI driven.
Turbulent Dynamos: How I learned to ignore kinematic dynamo theory MFUV 2015 With Amir Jafari and Ben Jackel.
Box Model: Core Evolution ~ 700 Myr T(r,t) C(r,t) r ICB (t) 3D Model: Numerical Dynamo ~ 5 Myr intervals T(x,t) C(x,t) B(x,t) T(x,t) C(x,t) B(x,t) Thermodynamic.
The Magneto-Rotational Instability and turbulent angular momentum transport Fausto Cattaneo Paul Fischer Aleksandr Obabko.
The Magnetorotational Instability
June 08MRI Transport properties1 MRI-driven turbulent resistivity Pierre-Yves Longaretti (LAOG) Geoffroy Lesur (DAMTP)
Team Report on integration of FSAM to SWMF and on FSAM simulations of convective dynamo and emerging flux in the solar convective envelope Yuhong Fan and.
Masahiro Machida (Kyoto Univ.) Shu-ichiro Inutsuka (Kyoto Univ.), Tomoaki Matsumoto (Hosei Univ.) Outflow jet first coreprotostar v~5 km/s v~50 km/s 360.
ITP 2008 MRI Driven turbulence and dynamo action Fausto Cattaneo University of Chicago Argonne National Laboratory.
General Relativistic MHD Simulations of Black Hole Accretion Disks John F. Hawley University of Virginia Presented at the Astrophysical Fluid Dynamics.
Simulations of Core Convection and Dynamo Activity in A-type Stars Matthew Browning Sacha Brun Juri Toomre JILA, Univ Colorado, and CEA-Saclay.
Black Hole Accretion, Conduction and Outflows Kristen Menou (Columbia University) In collaboration with Taka Tanaka (GS)
Magnetized (“ real ”) Accretion Flows Roman Shcherbakov, 5 December, 2007.
MIT Workshop on QPOs Oscillation Modes of the Inner Torus in MHD Simulations of Black-Hole Accretion Disks Collaborators: Omer Blaes (UCSB), Phil.
Magnetorotational Instability (MRI) Experiment
Scales of Motion, Reynolds averaging September 22.
Global 3D MHD Simulations of Optically Thin Black Hole Accretion Disks
Magnetic Fields and Protostellar Cores Shantanu Basu University of Western Ontario YLU Meeting, La Thuile, Italy, March 24, 2004.
Processes in Protoplanetary Disks Phil Armitage Colorado.
ANGULAR MOMENTUM TRANSPORT BY MAGNETOHYDRODYNAMIC TURBULENCE Gordon Ogilvie University of Cambridge TACHOCLINE DYNAMICS
May 23, 2006SINS meeting Structure Formation and Particle Mixing in a Shear Flow Boundary Layer Matthew Palotti University of Wisconsin.
Interaction between vortex flow and microturbulence Zheng-Xiong Wang (王正汹) Dalian University of Technology, Dalian, China West Lake International Symposium.
1 LES of Turbulent Flows: Lecture 13 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 2011.
Magneto-rotational instability in the solar core and Ap star envelopes Rainer Arlt Astrophysikalisches Institut Potsdam and Günther Rüdiger, Rainer Hollerbach.
MHD turbulence in protoplanetary disks S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP, Cambridge, UK), T.Heinemann (DAMTP,
Dynamo action & MHD turbulence (in the ISM, hopefully…)
The Effects of Magnetic Prandtl Number On MHD Turbulence
Energy spectra of small scale dynamos with large Reynolds numbers
Presentation transcript:

Numerical simulations of the magnetorotational instability (MRI) S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP, Cambridge, UK), T.Heinemann (DAMTP, Cambridge, UK) Background: ESO press release 36/06

The magnetorotational instability (Balbus & Hawley, 1991) nonlinear evolution  numerical simulations

I. Setup & numerical issues

The shearing box (1/2) H H HH x y z r y x Local approximations Ideal MHD equations + EQS (isothermal) v y =-1.5  x Shearing box boundary conditions (Hawley et al. 1995)

The shearing box (2/2) Magnetic field configuration Transport diagnostics Maxwell stress: T Max = /P 0 Reynolds stress: T Rey = / P 0  =T Max +T Rey  rate of angular momentum transport Zero net flux: B z =B 0 sin(2  x/H) Net flux: B z =B 0 x z

The 90’s and early 2000’s Local simulations (Hawley & Balbus 1992) Breakdown into MHD turbulence (Hawley & Balbus 1992) Dynamo process (Gammie et al. 1995) Transport angular momentum outward: ~ Subthermal B field, subsonic velocity fluctuations BUT: low resolutions used (32 3 or 64 3 )

The issue of convergence (Nx,Ny,Nz)=(128,200,128) Total stress:  =2.0  (Nx,Ny,Nz)=(256,400,256) Total stress:  =1.0  (Nx,Ny,Nz)=(64,100,64) Total stress:  =4.2  Fromang & Papaloizou (2007) ZEUS code (Stone & Norman 1992), zero net flux The decrease of  with resolution is not a property of the MRI. It is a numerical artifact!

Dissipation Reynolds number: Re =c s H/ Magnetic Reynolds number: Re M =c s H/  Small scales dissipation important  Explicit dissipation terms needed (viscosity & resistivity) Magnetic Prandtl number Pm= / 

Case I Zero net flux

Pm= /  =4, Re=3125 ZEUS :  =9.6  (resolution 128 cells/scaleheight) NIRVANA :  =9.5  (resolution 128 cells/scaleheight) SPECTRAL CODE:  =1.0  (resolution 64 cells/scaleheight) PENCIL CODE :  =1.0  (resolution 128 cells/scaleheight)  Good agreement between different numerical methods NIRVANA SPECTRAL CODE PENCIL CODE ZEUS Fromang et al. (2007)

Pm= /  =4, Re=6250 (Nx,Ny,Nz)=(256,400,256) DensityVertical velocityBy component Movie: B field lines and density field (software SDvision, D.Polmarede, CEA)

Effect of the Prandtl number Take Rem=12500 and vary the Prandtl number…. (Lx,Ly,Lz)=(H,  H,H) (Nx,Ny,Nz)=(128,200,128)   increases with the Prandtl number  No MHD turbulence for Pm<2 Pm= /  =4 Pm= /  = 8 Pm= /  = 16 Pm= /  = 2 Pm= /  = 1

The Pm effect Pm= /  >>1 Viscous length >> Resistive length Schekochihin et al. (2004) Schekochihin et al. (2007) VelocityMagnetic field Pm = /  <<1 Viscous length << Resistive length No proposed mechanisms…but: Dynamo in nature (Sun, Earth) Dynamo in experiments (VKS) Dynamo in simulations Schekochihin et al. (2007) VelocityMagnetic field

Parameter survey ? MHD turbulence No turbulence Re Pm Small scales important in MRI turbulence Transport increases with the Prandtl number No transport when Pm≤1 For a given Pm, does α saturates at high Re? ?

Pm=4, Transport (Nx,Ny,Nz)=(128,200,128) Re=3125 Total stress  =9.2 ± 2.8  Total stress  =7.6 ± 1.7  (Nx,Ny,Nz)=(256,400,256) Re=6250 Total stress  =2.0 ± 0.6  (Nx,Ny,Nz)=(512,800,512) Re=12500 No systematic trend as Re increases…

Case II Vertical net flux

Influence of Pm Lesur & Longaretti (2007) - Pseudo-spectral code, resolution: (64,128,64) - (Lx,Ly,Lz)=(H,4H,H) -  =100

Conclusions & open questions Include explicit dissipation in local simulations of the MRI: resistivity AND viscosity Zero net flux AND nonzero net flux  an increasing function of Pm Behavior at large Re is unclear ? MHD turbulence No turbulence Re Pm Global simulations? What is the effect of large scales? State of PP disks very uncertain (Pm<<1) Dead zone location/structure very uncertain…

Pm=4, flow structure Re=3125Re=6250Re=12500 By in the (x,z) plane Power spectra Kinetic energy Magnetic energy

Protoplanetary disks properties Size: R d ~ AU Mass: M d ~10 -2 M sol Lifetime:  d ~ yr Accretion rate: M acc ~ M sol.yr -1  need for a source of turbulence