Discrete Structures & Algorithms The P vs. NP Question EECE 320.

Slides:



Advertisements
Similar presentations
P, NP, NP-Complete Problems
Advertisements

NP-Hard Nattee Niparnan.
Polynomial-time reductions We have seen several reductions:
Great Theoretical Ideas in Computer Science.
FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
Lecture 21 NP-complete problems
Great Theoretical Ideas in Computer Science for Some.
CSE373: Data Structures & Algorithms Lecture 24: The P vs. NP question, NP-Completeness Nicki Dell Spring 2014 CSE 373 Algorithms and Data Structures 1.
INHERENT LIMITATIONS OF COMPUTER PROGRAMS CSci 4011.
CSC5160 Topics in Algorithms Tutorial 2 Introduction to NP-Complete Problems Feb Jerry Le
Computability and Complexity 13-1 Computability and Complexity Andrei Bulatov The Class NP.
Graphs 4/16/2017 8:41 PM NP-Completeness.
NP and NP-completeness
The Theory of NP-Completeness
NP-complete and NP-hard problems
Analysis of Algorithms CS 477/677
NP-Completeness NP-Completeness Graphs 4/17/2017 4:10 AM x x x x x x x
CS Master – Introduction to the Theory of Computation Jan Maluszynski - HT Lecture NP-Completeness Jan Maluszynski, IDA, 2007
Chapter 11: Limitations of Algorithmic Power
Chapter 11 Limitations of Algorithm Power Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Complexity Theory: The P vs NP question Lecture 28 (Dec 4, 2007)
1 The Theory of NP-Completeness 2012/11/6 P: the class of problems which can be solved by a deterministic polynomial algorithm. NP : the class of decision.
Nattee Niparnan. Easy & Hard Problem What is “difficulty” of problem? Difficult for computer scientist to derive algorithm for the problem? Difficult.
Tonga Institute of Higher Education Design and Analysis of Algorithms IT 254 Lecture 8: Complexity Theory.
Great Theoretical Ideas in Computer Science.
Cs3102: Theory of Computation Class 24: NP-Completeness Spring 2010 University of Virginia David Evans.
TECH Computer Science NP-Complete Problems Problems  Abstract Problems  Decision Problem, Optimal value, Optimal solution  Encodings  //Data Structure.
CSCI 2670 Introduction to Theory of Computing November 29, 2005.
P vs NP: what is efficient computation? Great Theoretical Ideas In Computer Science Anupam GuptaCS Fall 2005 Lecture 29Dec 8, 2005Carnegie Mellon.
Polynomial-time reductions We have seen several reductions:
CSCI 2670 Introduction to Theory of Computing December 1, 2004.
Week 10Complexity of Algorithms1 Hard Computational Problems Some computational problems are hard Despite a numerous attempts we do not know any efficient.
CSE 024: Design & Analysis of Algorithms Chapter 9: NP Completeness Sedgewick Chp:40 David Luebke’s Course Notes / University of Virginia, Computer Science.
NP-COMPLETENESS PRESENTED BY TUSHAR KUMAR J. RITESH BAGGA.
1 Lower Bounds Lower bound: an estimate on a minimum amount of work needed to solve a given problem Examples: b number of comparisons needed to find the.
MA/CSSE 473 Day 38 Problems Decision Problems P and NP.
Complexity 25-1 Complexity Andrei Bulatov Counting Problems.
CSC401 – Analysis of Algorithms Chapter 13 NP-Completeness Objectives: Introduce the definitions of P and NP problems Introduce the definitions of NP-hard.
COMPSCI 102 Introduction to Discrete Mathematics.
1 The Theory of NP-Completeness 2 Cook ’ s Theorem (1971) Prof. Cook Toronto U. Receiving Turing Award (1982) Discussing difficult problems: worst case.
COMPSCI 102 Introduction to Discrete Mathematics.
CSE373: Data Structures & Algorithms Lecture 22: The P vs. NP question, NP-Completeness Lauren Milne Summer 2015.
1 Chapter 34: NP-Completeness. 2 About this Tutorial What is NP ? How to check if a problem is in NP ? Cook-Levin Theorem Showing one of the most difficult.
NP-COMPLETE PROBLEMS. Admin  Two more assignments…  No office hours on tomorrow.
Great Theoretical Ideas In Computer Science Anupam GuptaCS Fall 2006 Lecture 28Dec 5th, 2006Carnegie Mellon University Complexity Theory: A graph.
NP-Completeness (Nondeterministic Polynomial Completeness) Sushanth Sivaram Vallath & Z. Joseph.
CS 3343: Analysis of Algorithms Lecture 25: P and NP Some slides courtesy of Carola Wenk.
Inspiration Versus Perspiration: The P = ? NP Question.
CSE 589 Part V One of the symptoms of an approaching nervous breakdown is the belief that one’s work is terribly important. Bertrand Russell.
CS6045: Advanced Algorithms NP Completeness. NP-Completeness Some problems are intractable: as they grow large, we are unable to solve them in reasonable.
NPC.
NP-Completeness Note. Some illustrations are taken from (KT) Kleinberg and Tardos. Algorithm Design (DPV)Dasgupta, Papadimitriou, and Vazirani. Algorithms.
Lecture. Today Problem set 9 out (due next Thursday) Topics: –Complexity Theory –Optimization versus Decision Problems –P and NP –Efficient Verification.
CSCI 2670 Introduction to Theory of Computing December 2, 2004.
TU/e Algorithms (2IL15) – Lecture 9 1 NP-Completeness NOT AND OR AND NOT AND.
1 1. Which of these sequences correspond to Hamilton cycles in the graph? (a) (b) (c) (d) (e)
CS 154 Formal Languages and Computability May 10 Class Meeting Department of Computer Science San Jose State University Spring 2016 Instructor: Ron Mak.
The NP class. NP-completeness Lecture2. The NP-class The NP class is a class that contains all the problems that can be decided by a Non-Deterministic.
Great Theoretical Ideas In Computer Science Anupam GuptaCS Fall 2006 Lecture 28Dec 7th, 2006Carnegie Mellon University Complexity Theory: the P.
Great Theoretical Ideas in Computer Science.
Conceptual Foundations © 2008 Pearson Education Australia Lecture slides for this course are based on teaching materials provided/referred by: (1) Statistics.
The NP class. NP-completeness
Great Theoretical Ideas in Computer Science
Introduction to Discrete Mathematics
NP-Completeness Yin Tat Lee
Chapter 34: NP-Completeness
Chapter 11 Limitations of Algorithm Power
NP-Completeness Yin Tat Lee
Great Theoretical Ideas In Computer Science
Presentation transcript:

Discrete Structures & Algorithms The P vs. NP Question EECE 320

The $1M question The Clay Mathematics Institute Millennium Prize Problems 1.Birch and Swinnerton-Dyer Conjecture 2.Hodge Conjecture 3.Navier-Stokes Equations 4.P vs NP 5.Poincaré Conjecture 6.Riemann Hypothesis 7.Yang-Mills Theory

Sudoku 3x3x3

Sudoku 3x3x3

Sudoku 4x4x4

Sudoku 4x4x4

Sudoku n x n x n... Suppose it takes you S(n) to solve n x n x n V(n) time to verify the solution Fact: V(n) = O(n 2 x n 2 ) Question: is there some constant such that S(n)  [V(n)] constant ?

Sudoku n x n x n... P vs NP problem = Does there exist an algorithm for n x n x n sudoku that runs in time P(n) for some polynomial P(n)?

The P versus NP problem (informally) Is proving a theorem much more difficult than checking the proof of a theorem?

Let’s start at the beginning…

Hamilton Cycle Given a graph G = (V,E), a cycle that visits all the nodes exactly once

The Problem “HAM” The Set “HAM” Input: Graph G = (V,E) Output:YES if G has a Hamilton cycle NO if G has no Hamilton cycle The set: HAM = { graph G | G has a Hamilton cycle }

AND NOT Circuit-Satisfiability Input: A circuit C with one output Output:YES if C is satisfiable NO if C is not satisfiable

The Set “SAT” SAT = { all satisfiable circuits C }

Bipartite Matching Input: A bipartite graph G = (U,V,E) Output:YES if G has a perfect matching NO if G does not

The Set “BI-MATCH” BI-MATCH = { all bipartite graphs that have a perfect matching }

Sudoku Input: n x n x n sudoku instance Output:YES if this sudoku has a solution NO if it does not The Set “SUDOKU” SUDOKU = { All solvable sudoku instances }

Decision Versus Search Problems Decision Problem YES/NO Does G have a Hamilton cycle? Search Problem Find a Hamilton cycle in G if one exists, else return NO

Reducing Search to Decision Given an algorithm for decision Sudoku, devise an algorithm to find a solution Idea: Fill in one-by-one and use decision algorithm

Reducing Search to Decision Given an algorithm for decision HAM, devise an algorithm to find a solution Idea: Find the edges of the cycle one by one

Decision/Search Problems We’ll look at decision problems because they have almost the same (asymptotically) complexity as their search counterparts

Polynomial Time and The Class “P” of Decision Problems

What is an efficient algorithm? polynomial time O(n c ) for some constant c non-polynomial time Is an O(n) algorithm efficient? How about O(n log n)? O(n 2 ) ? O(n 10 ) ? O(n log n ) ? O(2 n ) ? O(n!) ?

We consider non-polynomial time algorithms to be inefficient. And hence a necessary condition for an algorithm to be efficient is that it should run in poly-time.

Asking for a poly-time algorithm for a problem sets a (very) low bar when asking for efficient algorithms. The question is: can we achieve even this?

The Class P We say a set L  Σ * is in P if there is a program A and a polynomial p() such that for any x in Σ *, A(x) runs for at most p(|x|) time and answers question “is x in L?” correctly.

The class of all sets L whose elements can be recognized in polynomial time. The class of all decision problems that can be decided in polynomial time. The Class P

Why are we looking only at sets  Σ *? What if we want to work with graphs or boolean formulas?

Languages/Functions in P? Example 1: CONN = {graph G: G is a connected graph} Algorithm A 1 : If G has n nodes, then run depth first search from any node, and count number of distinct node you see. If you see n nodes, G  CONN, else not. Time: p 1 (|x|) = Θ (|x|).

Onto the new class, NP HAM, SUDOKU, SAT are not known to be in P

Verifying Membership Is there a short “proof” I can give you for: G  HAM? G  BI-MATCH? G  SAT?

NP A set L  NP if there exists an algorithm A and a polynomial p( ) For all x  L there exists y with |y|  p(|x|) such that A(x,y) = YES in p(|x|) time For all x  L For all y with |y|  p(|x|) in p(|x|) time we have A(x,y) = NO

can think of A as “proving” that x is in L Recall the Class P We say a set L  Σ * is in P if there is a program A and a polynomial p() such that for any x in Σ *, A(x) runs for at most p(|x|) time and answers question “is x in L?” correctly.

NP A set L  NP if there exists an algorithm A and a polynomial p( ) For all x  L there exists a proof y with |y|  p(|x|) such that A(x,y) = YES in p(|x|) time For all x  L For all y with |y|  p(|x|) in p(|x|) time Such that A(x,y) = NO

The Class NP The class of sets L for which there exist “short” proofs of membership (of polynomial length) that can “quickly” verified (in polynomial time). Recall: A doesn’t have to find these proofs y; it just needs to be able to verify that y is a “correct” proof.

P  NP For any L in P, we can just take y to be the empty string and satisfy the requirements. Hence, every language in P is also in NP.

Languages/Functions in NP? G  HAM? G  BI-MATCH? G  SAT?

Summary: P versus NP Set L is in P if membership in L can be decided in poly-time. Set L is in NP if each x in L has a short “proof of membership” that can be verified in poly- time. Fact: P  NP Question: Does NP  P ?

Why Care?

Classroom Scheduling Packing objects into bins Scheduling jobs on machines Finding cheap tours visiting a subset of cities Allocating variables to registers Finding good packet routings in networks Decryption … NP Contains Lots of Problems We Don’t Know to be in P

OK, OK, I care. But Where Do I Begin?

How can we prove that NP  P? I would have to show that every set in NP has a polynomial time algorithm… How do I do that? It may take forever! Also, what if I forgot one of the sets in NP?

We can describe one problem L in NP, such that if this problem L is in P, then NP  P. It is a problem that can capture all other problems in NP.

The “Hardest” Set in NP

Sudoku n x n x n... Sudoku has a polynomial time algorithm if and only if P = NP

The “Hardest” Sets in NP Sudoku SAT 3-Colorability Clique HAM

How do you prove these are the hardest?

Theorem [Cook/Levin]: SAT is one language in NP, such that if we can show SAT is in P, then we have shown NP  P. SAT is a language in NP that can capture all other languages in NP. We say SAT is NP-complete.

AND NOT 3-colourabilityCircuit Satisfiability SAT and 3-colourability

Combinatorial Circuits AND, OR, NOT, 0, 1 gates wired together with no feedback allowed x3x3 x2x2 x1x1 AND OR

AND NOT Yes, this circuit is satisfiable: 110 Circuit-Satisfiability Given a circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?

BRUTE FORCE: Try out all 2 n assignments Circuit-Satisfiability Given: A circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?

3-Colorability Circuit Satisfiability AND NOT

T F X Y XY FFF FTT TFT TTT OR

T F X NOT gate!

OR NOT xyz x y z

OR NOT xyz x y z

OR NOT xyz x y z

OR NOT xyz x y z

OR NOT xyz x y z How do we force the graph to be 3 colorable exactly when the circuit is satisfiable?

SAT and 3COLOR: Two problems that seem quite different, but are substantially the same. If you get a polynomial-time algorithm for one, you can get a polynomial-time algorithm for ALL. SAT and 3COLOR

Any language in NP SAT can be reduced (in polytime to) an instance of hence SAT is NP-complete 3COLOR can be reduced (in polytime to) an instance of hence 3COLOR is NP-complete

What have we learnt? Logic and proofs Sets Functions Mathematical induction Summations Algorithmic complexity Counting Discrete probability Graphs and trees

Applications

Capacity of wireless networks

We could have covered… Turing machines Finite-state machines The Halting Problem