Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct 11-12. 2006 1 Temperature Limits for XT-ADS.

Slides:



Advertisements
Similar presentations
(1) Die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 0 | Transient Analysis for the EFIT 3-Zone Core P. Liu, X.-N. Chen,
Advertisements

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct EFIT (PB) - Design and Preliminary.
Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Bologna, May 28-29, EFIT-Pb Transient Analysis.
Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov EFIT Design and Transient.
INRNE-BAS MELCOR Pre -Test Calculation of Boil-off test at Quench facility 11th International QUENCH Workshop Forschungszentrum Karlsruhe (FZK), October.
Lesson 17 HEAT GENERATION
Dynamic Response to Pulsed Beam Operation in Accelerator Driven Subcritical Reactors Ali Ahmad Supervisor: Dr Geoff Parks University Nuclear Technology.
First Wall Heat Loads Mike Ulrickson November 15, 2014.
Chapter 3.2: Heat Exchanger Analysis Using -NTU method
Thermal-Hydraulic Transient Analysis of the Missouri University Research Reactor (MURR) TRTR Annual Meeting September 17-20, 2007 Dr. Robert C. Nelson1,
September 24-25, 2003 HAPL meeting, UW, Madison 1 Armor Configuration & Thermal Analysis 1.Parametric analysis in support of system studies 2.Preliminary.
Preliminary T/H Analyses for EFIT-MgO/Pb Reactor Design WP1.5 Progress Meeting KTH / Stockholm, May 22-23, 2007 G. Bandini, P. Meloni, M. Polidori Italian.
Copyright © 2005 Advantica Inc. (USA Only) and Advantica Ltd. (Outside USA). All rights reserved by the respective owner. Own Use Gas Review of Pre-heater.
EUROTRANS – DM1 RELAP5 Model Evaluation with SIMMER-III Code and Preliminary Transient Analysis for EFIT Reactor WP5.1 Progress Meeting KTH / Stockholm,
LEADER Project: Task 5.4 Analysis of Representative DBC Events of the ETDR with RELAP5 G. Bandini - ENEA/Bologna LEADER 5 th WP5 Meeting JRC-IET, Petten,
HTTF Analyses Using RELAP5-3D Paul D. Bayless RELAP5 International Users Seminar September 2010.
EUROTRANS DESIGN WP 1.5 Meeting May 22nd/23rd 2007 Stockholm, Sweden Recommendations for the MOX fuel conductivity and heat transfer correlations to be.
EUROTRANS WP 1.5 Meeting FZK – Karlsruhe, November 27-28, 2008 FPN-FISNUC / Bologna EUROTRANS – DM1 EFIT Transients Analysis with RELAP5, SIMMER-III and.
Radiation Effects in a Couple Solid Spallation Target Materials S.A. Maloy, W. F. Sommer, M.R. James, T.J. Romero, M.L. Lopez Los Alamos National Laboratory,
1 EUROTRANS DM1 Safety Meeting, November, 2008, FZK, RFA FI6W-CT : Integrated Project on European Transmutation (EUROTRANS) CEA/DEN/DER.
Transmutation and ADS Safety Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Transient Analysis for EFIT (ENEA 384MWth 3-Zone core) Safety and.
May 22nd & 23rd 2007 Stockholm EUROTRANS: WP 1.5 Task Containment Assessment IP-EUROTRANS DOMAIN 1 Design WP 1.5 Safety Assessment of the Transmutation.
EUROTRANS – DM1 Preliminary Transient Analysis for EFIT with RELAP5 and RELAP/PARCS Codes WP5.1 Progress Meeting Empresarios Agrupados - Madrid, November.
EUROTRANS: WP1.5 Technical meeting, Bologna, May 28-29, L. Mansani WP1.2 EFIT and XP-ADS Data.
IP-Eurotrans DM1-WP1.5 meeting, Lyon, October 10-11, Gas Plenum in XT-ADS Fuel Rod V. Sobolev, B. Arien SCK·CEN, Boeretang 200, Mol, Belgium.
AREVA NP EUROTRANS WP1.5 Technical Meeting Task – ETD Safety approach Safety approach for XT-ADS: Deliverable 1.20 Lyon, October Sophie.
1 Safety studies for MYRRHA B. Arien, S. Heusdains, H. Aït Abderrahim on behalf of the MYRRHA Team and Support IP-Eurotrans Workshop DM1-WP1.5Brussels,
Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Karlsruhe, Nov 27-28, EFIT-Pb Transient Analysis.
Bologna on 28 May 2008 – IP EUROTRANS WP1.51 IE - Institute for Energy Petten - The Netherlands
WP1.5 Meeting, Lyon, October 10-11, 2006, P. Richard, J. F. Pignatel, G. Rimpault 1 Status of He-EFIT Design Richard – J. F Pignatel – G. Rimpault Pierre.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills, and J. D. Rader G. W. Woodruff School of Mechanical Engineering Parametric Design Curves for.
Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Madrid, Nov XT-ADS Transient Analysis.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski and M. D. Hageman Woodruff School of Mechanical Engineering Extrapolating Experimental Results for Model Divertor.
WP 1.5 Progress Meeting ENEA – Bologna, Italy, May 28-30, 2008 FPN-FISNUC / Bologna EUROTRANS – DM1 Analysis of EFIT Unprotected Accidental Transients.
VG.1 SCWR Fuel Rod Design Requirements Design Limits Input for Performance Evaluations H. Garkisch, Westinghouse Electric Co.
13.4. GENERAL DESIGN CONSIDERATIONS: PRESSURE VESSELS
Investigation into the Viability of a Passively Active Decay Heat Removal System In ALLEGRO Laura Carroll, Graduate Physicist Physics & Licensing Team,
Fracture and Creep in the All-Tungsten ARIES Divertor
Argonne National Laboratory 2007 RELAP5 International User’s Seminar
Thermal hydraulic analysis of ALFRED by RELAP5 code & by SIMMER code G. Barone, N. Forgione, A. Pesetti, R. Lo Frano CIRTEN Consorzio Interuniversitario.
High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory Nuclear Engineering Division.
THERMAL HYDRAULIC ANALYSIS FOR THE OREGON STATE REACTOR USING RELAP5-3D Wade R. Marcum Brian G. Woods 2007 TRTR Conference September 19, 2007.
1 Calorimeter Thermal Analysis with Increased Heat Loads September 28, 2009.
1 IAEA INPRO - PGAP Project – 5 th Consultancy Meeting – Vienna (Austria), December, 2011 RELIABILITY ANALYSIS OF 2400 MWTH GAS-COOLED FAST REACTOR.
Calorimeter Analysis Tasks, July 2014 Revision B January 22, 2015.
Completion of Water-Cooled Backup Study Eric Pitcher TAC-10 November 5, 2014.
ALFRED System Configuration Luigi Mansani
MHD/Heat Transfer considerations for SiC FCI in DEMO and ITER Sergey Smolentsev DCLL Special Meeting at UCLA April 23-24, 2007.
EUROTRANS – DM1 ENEA Activities on EFIT Safety Analysis ENEA – FIS/NUC Bologna - Italy WP5.1 Progress Meeting Tractebel / Brussels, March 17, 2006 G. Bandini,
IAEA Meeting on INPRO Collaborative Project “Performance Assessment of Passive Gaseous Provisions (PGAP)” December, 2011, Vienna A.K. Nayak, PhD.
Safety Analysis Results of the DEC Transients of ALFRED LEADER Lead-cooled European Advanced DEmonstration Reactor G. Bandini (ENEA), E. Bubelis, M. Schikorr.
1 Kaspar Kööp, Marti Jeltsov Division of Nuclear Power Safety Royal Institute of Technology (KTH) Stockholm, Sweden LEADER 4 th WP5 MEETING, Karlsruhe.
PSB dump: proposal of a new design EN – STI technical meeting on Booster dumps Friday 11 May 2012 BE Auditorium Prevessin Alba SARRIÓ MARTÍNEZ.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
What can we learn about dynamic triggering in the the lab? Lockner and Beeler, 1999.
ERMSAR 2012, Cologne March 21 – 23, 2012 ESTIMATION OF THERMAL-HYDRAULIC LOADING FOR VVER-1000 UNDER SEVERE ACCIDENT SCENARIO Barun Chatterjee 1, Deb Mukhopadhyay.
LEADER Project Analysis of Representative DBC Events of the ETDR with RELAP5 and CATHARE Giacomino Bandini - ENEA/Bologna Genevieve Geffraye – CEA/Grenoble.
Analysis of Representative DEC Events of the ETDR with RELAP5 LEADER Project: Task 5.5 G. Bandini - ENEA/Bologna LEADER 5 th WP5 Meeting JRC-IET, Petten,
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
KIT TOWN OFFICE OSTENDORFHAUS Karlsruhe, 21 st November 2012 CIRTEN Consorzio universitario per la ricerca tecnologica nucleare Antonio Cammi, Stefano.
Results of First Stage of VVER Rod Simulator Quench Tests 11th International QUENCH Workshop Forschungszentrum Karlsruhe October 25-27, 2005 Presented.
Mitglied der Helmholtz-Gemeinschaft Jörg Wolters, Michael Butzek Focused Cross Flow LBE Target for ESS 4th HPTW, Malmö, 3 May 2011.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills and M. D. Hageman G. W. Woodruff School of Mechanical Engineering Correlations for Divertor Thermal-Hydraulic.
Italian National Agency for New Technologies, Energy and Environment Advanced Physics Technology Division Via Martiri di Monte Sole 4, Bologna, Italy.
EUROTRANS – DM1 Preliminary Transient Analysis for EFIT Design WP5.1 Progress Meeting AREVA / Lyon, October 10-11, 2006 G. Bandini, P. Meloni, M. Polidori.
ERMSAR 2012, Cologne March 21 – 23, 2012 Post-test calculations of CERES experiments using ASTEC code Lajos Tarczal 1, Gabor Lajtha 2 1 Paks Nuclear Power.
TS Cool Down Studies TSu Unit Coils (24-25) N. Dhanaraj and E. Voirin Tuesday, 10 March 2015 Reference: Docdb No:
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
Analysis of Reactivity Insertion Accidents for the NIST Research Reactor Before and After Fuel Conversion J.S. Baek, A. Cuadra, L-Y. Cheng, A.L. Hanson,
Egyptian Atomic Energy Authority (EAEA), Egypt
Presentation transcript:

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct Temperature Limits for XT-ADS Clad Material T-91 M. Schikorr D. Struwe (FzK) EUROTRANS: DM1 WP1.5 : “Safety” Lyon, October 2006

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct Lower Temperature Limits of T-91 Clad Material under Nominal Conditions 2.Upper Temperature Limits of T-91 Clad Material under Nominal Conditions 3.Temperature Limits of T-91 Clad Material under Transient Conditions Topics:

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct There appears to be a lower temperature limit due to EMBRITTLEMT isssues 2.There are recommendations to keep T-91 > 325 °C 1.Lower Temperature Limit of T-91 under nominal plant conditions: See DEMETRA presentation to this issue by Janne Wallenius DEMETRA recommendation: Del 4.1: T inlet = 350 °C  T core = 80 °C

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct To avoid CORROSION of T-91 one should keep the upper clad temperature < 500 °C 2.FeAl alloy COATING by GESA treatment will improve corrosion resistance and the upper temperature limit increased to about 550°C (L. Mansani). 3. No „coating“ requires that the nominal maximum cladding temperature of the peak pin should be below ~ 490 °C to provide margin to account for hot-spot analyses results. 2.Upper Temperature Limit of T-91 under nominal plant conditions:

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct Accepting the SPIRE and DEMETRA recommendations leads the core inlet temperature to be : T_in ~ 330 °C 2.No „coating“ requires that the maximum cladding temperature of the peak pin should be T_clad_peak ~ 480 °C. 3.Allowing for a temperature drop of ~ 23 °C between cladding and coolant for the peak pin at the core outlet (peak clad temp), and 4.Using a radial form factor of for the XT-ADS requires that the heat up of coolant across the core is limited to:  T_core = ( – 330) / = 92.4 °C We have select :  T_core = 90 °C Implications on the XT-ADS Design : Nominal Conditions

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct Under nominal conditions abide by the temperature limits stated above, 2.Assure a sufficiently large natural convection flow rate to „survive“ an unproteced loss of flow transient (ULOF) : minimize pin clad failure This implies : 1.keep pressure drop across the core „low“ (~< 0.75 bar) by selecting an appropriate fuel pin / subassembly design 2.minimize pressure losses throughout the primary / DHRS system such that total system pressure loss <~ 1.0 bar 3.limit the fission pressure gas buildup at EOL to ~ 50 bar to assure pin integrity under ULOF conditions. This implies designing an appropriate fission gas plenum volume. Contraints on the XT-ADS Design : Nominal and Transient Conditions

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct There are several different modes of pin cladding failure. 2.One of the most important is CLAD CREEP failure. 3.Recent experimental data of unirradiated T-91 material by CIEMAT yielded creep data which indicate that particular attention needs to be paid to this potential clad failure mode under all transient conditions leading to cladding temperatures higher than > 800 °C. This in particular applies to ULOF at EOL conditions when the fuel pins are pressurized by the accumulated released fission gas. 4.For T-91 the clad failure limit is no longer ~ 1000 °C (as we have asssumed in a somewhat generous manner during the PDS-XADS safety study), but it is now in the range ~ 850 °C. Pin/Cladding Failure Conditions under Transient Conditions (1/2) :

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct The failure time of the cladding due to clad creep is dependent on 3 major parameters, namely: 1.Type of cladding material selected, 2.Hoop_Stress, essentially determined by a.the fission gas pressure Pgas, and b.the geometry of the pin design, namely outer pin diameter and cladding thickness, 3.The temperature of the cladding material. Pin/Cladding Failure Conditions under Transient Conditions (2/2):

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct Most Current T91-Cladding Creep Data from CIEMAT Experiments (data distributed by J. Wallenius) P is known as the „Larson-Miller Parameter (LMP)“

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct T91 Creep Data Analysis 1. Plotting Data from Table : 2. Inverting the plotted Data 3. Curve fitting the data in the critical pressure range (Two equations)

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct Creep-Stress Correlations Used in the Analysis Another equation providing simliar results (thin cladding ):

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct Issues Needing Attention : 1.) Fission gas plenum pressure and hoop stress is dependant on pin geometry, i.e. pin diameter,clad thickness and volume of fission gas plena made available. This implies that clad failure time is dependant on the particular pin design. 2.) Experimental data on CREEP available only up to 700 °C (973 K). Is extrapolation of data into higher temperature ranges ok ??? 3.) Issue of expected fission gas plenum pressure under EOL conditions needs discussion/clarification. Issue : gas release fraction from fuel matrix into gap and plenum, 40, 60, 80, 100% release ?? Have decided to be conservative : assume 100% gas release from fuel

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct T91 Clad Failure Time as Function of Clad Temperature and Fission Gas Pressure for XT-ADS Design : Pin = 6.55mm OD, clad thickness = 0.475mm, 580mm Lower Gas Plenum 1. Design Criteria: Clad Failure ≥30 min under ULOFss conditions at EOL 2. Adopted : 50 bar (5 Mpa) as design fission gas plenum pressure for peak pin at EOL 3. This implies : for peak pin : Tclad_max < 847 °C under ULOFss conditions at EOL

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct T91 Clad Failure Time as Function of Clad Temperature and Fission Gas Pressure for XT-ADS Design Variant 1 (Bologna): Pin = 6.55mm OD, 580mm Lower Gas Plenum Peak Pin, Nominal Conditions, EOL Pgas = 39 bar

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct XT-ADS : Pin = 6.55mm OD T_in = 330 °C Nominal Conditions at EOL :  Pfriction = 508 mbar  spacers = 97 mbar  Pin_outlet = 123 mbar  Pcore = 729 mbar  Psystem = bar  H_core_HX = 2.0 m Pgas = 28 bar Pgas = 39 bar

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct XT-ADS Variant 1 Bologna Design Pin = 6.55mm OD 580 mm Gas Plenum T_in = 330 °C ULOFss Conditions at EOL, w_nat = 28.7% nom flow Pgas = 41.6 bar Pgas = 39.6 bar

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct T91 Clad Failure Time as Function of Clad Temperature and Fission Gas Pressure for XT-ADS Design Variant 1 (Bologna): 6.55mm OD Pin, 580mm Lower Gas Plenum Peak Pin, ULOFss, EOL, nat_conv_flow = 28.7% of nominal (1233 kg/s) 2. What about transient conditions ?? Pgas = 42 bar Under ULOFss steady state conditions : 5.1 hrs to failure for current designs implying large margin to 30 min limit

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct XT-ADS Pin = 6.55mm OD 580 mm Gas Plenum Time to Clad Failure hot SA avg Pin: EOC (Pgas=40 bar): 0.64 hrs ULOFss Conditions at EOL, assume w_nat decreases to 25% nom Time to Clad Failure peak pin: EOC (Pgas=42 bar): 0.17 hrs

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct T91 Clad Failure Time as Function of Clad Temperature and Fission Gas Pressure for XT-ADS Design Variant 1 (Bologna): 6.55mm OD Pin, 580mm Lower Gas Plenum Peak Pin, ULOFss, EOL, assume : nat_conv_flow = 25% nominal Clad Failure Time in XT-ADS very sensitive to nat_conv flow rate under ULOFss conditions since nat. convection already relatively low ( ~ 25 % instead of ~ 45% in EFIT and XADS) Pgas = 42 bar

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct Potential Uncertainties : 1.Available fission gas plenem volume. Currently calculated to be 17 cm 3 per pin. A reduction to ~ 13 cm 3 (alternative pin design option) will decrease failure time from 5.1 hrs to 2.9 hrs as it will increase fission gas pressure from 42 bar to 54 bar 2.Uncertainty in the pin fission gas temperature calculation needs to be considered 3.Superimposing two of several uncertainties will decrease failure time to < 1 hr 3.All issues associated with the natural convection flow rate 4.Transient conditions: during the ULOF transient there may be significant over- and under-shoots in clad temperatures (see following presentation).

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct Conclusions on T-91 Material Property Limits (1/2 ) : 1.)EMBRITTLEMENT makes it advisable to select T_in ~ 330 °C following SPIRE and DEMETRA recommendations. 2.)CORROSION issues require that the maximum clad temperatures of the peak pin are below 500 °C under nominal conditions (unless the clad material is coated thereby increasing the temperature limit to ~ 550 °C) limiting core heat up to 90 °C. 3.)New T91 CREEP Data from CIEMAT should be taken into consideration during all transients especially those leading to clad temperatures > 850 °C.

Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Lyon, Oct Conclusions on T-91 Material Property Limits (2/2) : 4.) Under ULOF steady state conditions max. cladding temperatures between 800 °C – 900 °C should be expected. For T_in = 330 °C, T_clad_max (ULOF) : 800 °C – 865 °C corresponding clad failure time due to creep ranging from 5 hrs to 0.17 hrs For the 30 min limit, the maximum temperature of the clad should not exceed 847 °C 6) The issue of high temperature corrosion still needs to be assessed / evaluated in view of experimental data currently assembled (DEMETRA) 5.) The current design (580mm lower gas plenum) is comfortably achieving the 30 min design goal as clad failure time limit under ULOFss and EOL conditions.