Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Reviews:

Slides:



Advertisements
Similar presentations
THE ISING PHASE IN THE J1-J2 MODEL Valeria Lante and Alberto Parola.
Advertisements

Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Quantum Phase Transitions Subir Sachdev Talks online at
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum antiferromagnetism and superconductivity Subir Sachdev Talk online at
Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Physical Review B 71, and (2005), cond-mat/
Magnetic phases and critical points of insulators and superconductors Colloquium article in Reviews of Modern Physics, July 2003, cond-mat/ cond-mat/
Quantum phase transitions of correlated electrons and atoms Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Quantum.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Competing orders in the cuprate superconductors.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Insights into quantum matter from new experiments Detecting new many body states will require: Atomic scale resolution of magnetic fields Measuring and.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Talk online:
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Quantum phase transitions cond-mat/ Quantum Phase Transitions Cambridge University Press.
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Anomalous excitation spectra of frustrated quantum antiferromagnets John Fjaerestad University of Queensland Work done in collaboration with: Weihong Zheng,
The quantum mechanics of two dimensional superfluids Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz Bartosch.
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); cond-mat/ cond-mat/ Leon Balents.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Equilibrium dynamics of entangled states near quantum critical points Talk online at Physical Review Letters 78, 843.
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Talk online at Physical Review.
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Tuning order in the.
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Frustrated magnetism in 2D Collin Broholm Johns Hopkins University & NIST  Introduction Two types of antiferromagnets Experimental tools  Frustrated.
Competing orders and quantum criticality
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Deconfined quantum criticality T. Senthil (MIT) P. Ghaemi,P. Nikolic, M. Levin (MIT) M. Hermele (UCSB) O. Motrunich (KITP), A. Vishwanath (MIT) L. Balents,
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Understanding.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Quantum criticality: where are we and where are we going ?
The quantum phase transition between a superfluid and an insulator: applications to trapped ultracold atoms and the cuprate superconductors.
Quantum vortices and competing orders
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Quantum phases and critical points of correlated metals
Science 303, 1490 (2004); cond-mat/ cond-mat/
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); Physical Review B 70, (2004), 71,
Quantum phases and critical points of correlated metals
Possible realization of SU(2)_2 WZNW Quantum Critical Point in CaCu2O3
Deconfined quantum criticality
Presentation transcript:

Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Reviews: cond-mat/ Talks online: Sachdev

What is a quantum phase transition ? Non-analyticity in ground state properties as a function of some control parameter g T Quantum-critical Why study quantum phase transitions ? g gcgc Theory for a quantum system with strong correlations: describe phases on either side of g c by expanding in deviation from the quantum critical point. Critical point is a novel state of matter without quasiparticle excitations Critical excitations control dynamics in the wide quantum-critical region at non-zero temperatures.

Outline A.“Dimerized” Mott insulators with a spin gap Tuning quantum transitions by applied pressure B.Spin gap state on the square lattice Spontaneous bond order C.Tuning quantum transitions by a magnetic field 1. Mott insulators 2. Cuprate superconductors

(A) “Dimerized” Mott Insulators with a spin gap Tuning quantum transitions by applied pressure

TlCuCl 3 M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/

TlCuCl 3 M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/

S=1/2 spins on coupled dimers Coupled Dimer Antiferromagnet M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40, (1989). N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 4529 (1994). J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999). M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, (2002).

Weakly coupled dimers Paramagnetic ground state

Weakly coupled dimers Excitation: S=1 triplon (exciton, spin collective mode) Energy dispersion away from antiferromagnetic wavevector

Weakly coupled dimers S=1/2 spinons are confined by a linear potential into a S=1 triplon

TlCuCl 3 N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B (2001). “triplon” or spin exciton

Square lattice antiferromagnet Experimental realization: Ground state has long-range magnetic (Neel or spin density wave) order Excitations: 2 spin waves (magnons)

TlCuCl 3 J. Phys. Soc. Jpn 72, 1026 (2003)

1 Neel state T=0  in  cuprates  Pressure in TlCuCl 3 Quantum paramagnet c = (3) M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, (2002)

b c PHCC – a two-dimensional antiferromagnet PHCC = C 4 H 12 N 2 Cu 2 Cl 6 a c Cu Cl C N M. B. Stone, I. A. Zaliznyak, D. H. Reich, and C. Broholm, Phys. Rev. B 64, (2001).

  (meV) Dispersion to “chains” Not chains but planes M. B. Stone, I. A. Zaliznyak, D. H. Reich, and C. Broholm, Phys. Rev. B 64, (2001). PHCC – a two-dimensional antiferromagnet

  (meV) Dispersion to “chains” Not chains but planes   (meV) h Triplon dispersion M. B. Stone, I. A. Zaliznyak, D. H. Reich, and C. Broholm, Phys. Rev. B 64, (2001). PHCC – a two-dimensional antiferromagnet

S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 (1990). Quantitative theory of experiments and simulations: method of bond operators Operators algebra for all states on a single dimer Canonical Bose operators with a hard core constraint Spin operators on both sites can be expressed in terms of bond operators

Quantitative theory of experiments and simulations: method of bond operators S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 (1990). A. V. Chubukov and Th. Jolicoeur, Phys. Rev. B 44, (1991).

Quantitative theory of experiments and simulations: method of bond operators S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 (1990).

3-component antiferromagnetic order parameter Field theory for quantum criticality Three triplon continuum Triplon pole Structure holds to all orders in u ~3 

3-component antiferromagnetic order parameter Field theory for quantum criticality Two spin-wave continuum Structure holds to all orders in u ~3 

Entangled states at of order c 1/ c Triplon quasiparticle weight Z A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, (1994) Antiferromagnetic moment N 0 1/ c Triplon energy gap  1/ c

Critical coupling No quasiparticles --- dissipative critical continuum Dynamic spectrum at the critical point Field theory for quantum criticality

Quantum criticality described by strongly-coupled critical theory with universal dynamic response functions dependent on Triplon scattering amplitude is determined by k B T alone, and not by the value of microscopic coupling u S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).

(B) Spin gap state on the square lattice: Spontaneous bond order

Paramagnetic ground state of coupled ladder model

Can such a state with bond order be the ground state of a system with full square lattice symmetry ?

Need additional exchange interactions with full square lattice symmetry to move out of Neel state into paramagnet e.g. a second neighbor exchange J 2. This defines a dimensionless coupling g = J 2 / J

Collinear spins and compact U(1) gauge theory Key ingredient: Spin Berry Phases Write down path integral for quantum spin fluctuations

Collinear spins and compact U(1) gauge theory Write down path integral for quantum spin fluctuations Key ingredient: Spin Berry Phases

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a

Collinear spins and compact U(1) gauge theory Partition function on square lattice Modulus of weights in partition function: those of a classical ferromagnet at “temperature” g

Change in choice of n 0 is like a “gauge transformation” (  a is the oriented area of the spherical triangle formed by n a and the two choices for n 0 ). The area of the triangle is uncertain modulo 4  and the action is invariant under These principles strongly constrain the effective action for A a  which provides description of the large g phase

Simplest large g effective action for the A a  N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990). K. Park and S. Sachdev, Phys. Rev. B 65, (2002).

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

For S=1/2 and large e 2, low energy height configurations are in exact one-to-one correspondence with nearest-neighbor valence bond pairings of the sites square lattice There is no roughening transition for three dimensional interfaces, which are smooth for all couplings There is a definite average height of the interface Ground state has bond order. N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

Smooth interface with average height 3/8 0 1/2 1/4 3/4 0 1/2 1/4 3/4 0 1/4 0 W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989)

Smooth interface with average height 5/8 1 1/2 1/4 3/4 1 1/2 1/4 3/4 1 1/4 1 W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989)

Smooth interface with average height 7/8 1 1/2 5/4 3/4 1 1/2 5/4 3/4 1 5/4 1 W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989)

Smooth interface with average height 1/8 0 1/2 1/4 -1/4 0 1/2 1/4 -1/4 0 1/4 0 W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989)

“Disordered-flat” interface with average height 1/2 1/2 1/4 3/4 1/2 1/4 3/4 1/4 W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989)

“Disordered-flat” interface with average height 3/4 1/2 3/4 1/2 3/4 W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989)

1/4 -1/4 W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989) “Disordered-flat” interface with average height 0 1/4

W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989) “Disordered-flat” interface with average height 1/4 1/4 1/2

Two possible bond-ordered paramagnets for S=1/2 There is a broken lattice symmetry, and the ground state is at least four-fold degenerate. N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

g 0

A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett. 89, (2002) Bond order in a frustrated S=1/2 XY magnet g= First large scale numerical study of the destruction of Neel order in a S=1/2 antiferromagnet with full square lattice symmetry

g 0

g 0 S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990). K. Park and S. Sachdev, Phys. Rev. B 65, (2002).

g Critical theory is not expressed in terms of order parameter of either phase, but instead contains spinons interacting the a non-compact U(1) gauge force Phase diagram of S=1/2 square lattice antiferromagnet or Neel order Spontaneous bond order, confined spinons, and “triplon” excitations T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, submitted to Science

Use a sequence of simpler models which can be analyzed by duality mappings A. Non-compact QED with scalar matter B. Compact QED with scalar matter C. N=1: Compact QED with scalar matter and Berry phases D. theory E. Easy plane case for N=2 Nature of quantum critical point

Use a sequence of simpler models which can be analyzed by duality mappings A. Non-compact QED with scalar matter B. Compact QED with scalar matter C. N=1: Compact QED with scalar matter and Berry phases D. theory E. Easy plane case for N=2 Nature of quantum critical point

A. N=1, non-compact U(1), no Berry phases C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981).

Use a sequence of simpler models which can be analyzed by duality mappings A. Non-compact QED with scalar matter B. Compact QED with scalar matter C. N=1: Compact QED with scalar matter and Berry phases D. theory E. Easy plane case for N=2 Nature of quantum critical point

Use a sequence of simpler models which can be analyzed by duality mappings A. Non-compact QED with scalar matter B. Compact QED with scalar matter C. N=1: Compact QED with scalar matter and Berry phases D. theory E. Easy plane case for N=2 Nature of quantum critical point

B. N=1, compact U(1), no Berry phases

Use a sequence of simpler models which can be analyzed by duality mappings A. Non-compact QED with scalar matter B. Compact QED with scalar matter C. N=1: Compact QED with scalar matter and Berry phases D. theory E. Easy plane case for N=2 Nature of quantum critical point

Use a sequence of simpler models which can be analyzed by duality mappings A. Non-compact QED with scalar matter B. Compact QED with scalar matter C. N=1: Compact QED with scalar matter and Berry phases D. theory E. Easy plane case for N=2 Nature of quantum critical point

C. N=1, compact U(1), Berry phases

Use a sequence of simpler models which can be analyzed by duality mappings A. Non-compact QED with scalar matter B. Compact QED with scalar matter C. N=1: Compact QED with scalar matter and Berry phases D. theory E. Easy plane case for N=2 Nature of quantum critical point Identical critical theories!

Use a sequence of simpler models which can be analyzed by duality mappings A. Non-compact QED with scalar matter B. Compact QED with scalar matter C. N=1: Compact QED with scalar matter and Berry phases D. theory E. Easy plane case for N=2 Nature of quantum critical point Identical critical theories!

D., compact U(1), Berry phases

E. Easy plane case for N=2

g Critical theory is not expressed in terms of order parameter of either phase, but instead contains spinons interacting the a non-compact U(1) gauge force Phase diagram of S=1/2 square lattice antiferromagnet or Neel order Spontaneous bond order, confined spinons, and “triplon” excitations T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, submitted to Science

Outline A.“Dimerized” Mott insulators with a spin gap Tuning quantum transitions by applied pressure B.Spin gap state on the square lattice Spontaneous bond order C.Tuning quantum transitions by a magnetic field 1. Mott insulators 2. Cuprate superconductors

(C) Tuning quantum transitions by a magnetic field 1. Mott insulators

1 Neel state T=0  in  cuprates  Pressure in TlCuCl 3 Quantum paramagnet c = (3) M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, (2002)

Effect of a field on paramagnet Energy of zero momentum triplon states H  0 Bose-Einstein condensation of S z =1 triplon

TlCuCl 3 Ch. Rüegg, N. Cavadini, A. Furrer, H.-U. Güdel, K. Krämer, H. Mutka, A. Wildes, K. Habicht, and P. Vorderwisch, Nature 423, 62 (2003).

TlCuCl 3 Ch. Rüegg, N. Cavadini, A. Furrer, H.-U. Güdel, K. Krämer, H. Mutka, A. Wildes, K. Habicht, and P. Vorderwisch, Nature 423, 62 (2003). “Spin wave (phonon) above critical field

Phase diagram in a magnetic field H 1/ Spin singlet state with a spin gap Canted magnetic order g  B H = 

H 1/ Spin singlet state with a spin gap Canted magnetic order 1 Tesla = meV Related theory applies to double layer quantum Hall systems at =2 g  B H =  Phase diagram in a magnetic field

TlCuCl 3 M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/ Canted magnetic order Spin gap paramagnet

Phase diagram in a strong magnetic field. Magnetization = density of triplons H  Spin gap Canted magnetic order

 At very large H, magnetization saturates 1 Phase diagram in a strong magnetic field. Magnetization = density of triplons H Spin gap Canted magnetic order

M  1 1/2 Respulsive interactions between triplons can lead to magnetization plateau at any rational fraction Magnetization = density of triplons H Phase diagram in a strong magnetic field. Spin gap Canted magnetic order

M  1 1/2 Quantum transitions in and out of plateau are Bose-Einstein condensations of “extra/missing” triplons Magnetization = density of triplons H Partial magnetization plateau observed in SrCu 2 (BO 3 ) 2 and NH 4 CuCl 3 Phase diagram in a strong magnetic field. Spin gap Canted magnetic order

(C) Tuning quantum transitions by a magnetic field 2. Cuprate superconductors

kyky kxkx  /a 0 Insulator  ~ SC J. M. Tranquada et al., Phys. Rev. B 54, 7489 (199 6). G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432 (1997). S. Wakimoto, G. Shirane et al., Phys. Rev. B 60, R769 (1999). Y.S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999) S. Wakimoto, R.J. Birgeneau, Y.S. Lee, and G. Shirane, Phys. Rev. B 63, (2001). (additional commensurability effects near  =0.125) T=0 phases of LSCO Interplay of SDW and SC order in the cuprates SC+SDW SDW Néel

kyky kxkx  /a 0 Insulator  ~ SC J. M. Tranquada et al., Phys. Rev. B 54, 7489 (199 6). G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432 (1997). S. Wakimoto, G. Shirane et al., Phys. Rev. B 60, R769 (1999). Y.S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999) S. Wakimoto, R.J. Birgeneau, Y.S. Lee, and G. Shirane, Phys. Rev. B 63, (2001). (additional commensurability effects near  =0.125) T=0 phases of LSCO SC+SDW SDW Néel Interplay of SDW and SC order in the cuprates

Superconductor with T c,min =10 K kyky kxkx  /a 0  ~ SC J. M. Tranquada et al., Phys. Rev. B 54, 7489 (199 6). G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432 (1997). S. Wakimoto, G. Shirane et al., Phys. Rev. B 60, R769 (1999). Y.S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999) S. Wakimoto, R.J. Birgeneau, Y.S. Lee, and G. Shirane, Phys. Rev. B 63, (2001). (additional commensurability effects near  =0.125) T=0 phases of LSCO SC+SDW SDW Néel Interplay of SDW and SC order in the cuprates

Collinear magnetic (spin density wave) order

Superconductor with T c,min =10 K kyky kxkx  /a 0  ~ SC T=0 phases of LSCO SC+SDW SDW Néel Use simplest assumption of a direct second-order quantum phase transition between SC and SC+SDW phases Interplay of SDW and SC order in the cuprates

Otherwise, new theory of coupled excitons and nodal quasiparticles L. Balents, M.P.A. Fisher, C. Nayak, Int. J. Mod. Phys. B 12, 1033 (1998). Magnetic transition in a d-wave superconductor

Coupling to the S=1/2 Bogoliubov quasiparticles of the d-wave superconductor Trilinear “Yukawa” coupling is prohibited unless ordering wavevector is fine-tuned. Similar terms present in action for SDW ordering in the insulator Magnetic transition in a d-wave superconductor

Superconductor with T c,min =10 K kyky kxkx  /a 0  ~ SC T=0 phases of LSCO SC+SDW SDW Néel H Follow intensity of elastic Bragg spots in a magnetic field Use simplest assumption of a direct second-order quantum phase transition between SC and SC+SDW phases Interplay of SDW and SC order in the cuprates Recall, in an insulator intensity would increase ~ H 2

Dominant effect of magnetic field: Abrikosov flux lattice

(extreme Type II superconductivity) Effect of magnetic field on SDW+SC to SC transition Quantum theory for dynamic and critical spin fluctuations Static Ginzburg-Landau theory for non-critical superconductivity

Triplon wavefunction in bare potential V 0 (x) Energy x 0 Spin gap  Vortex cores D. P. Arovas, A. J. Berlinsky, C. Kallin, and S.-C. Zhang, Phys. Rev. Lett. 79, 2871 (1997) suggested nucleation of static magnetism (with  =0) within vortex scores in a first-order transition. However, given the small size of the vortex cores, the magnetism must become dynamic as in a spin gap state. S. Sachdev, Phys. Rev. B 45, 389 (1992); N. Nagaosa and P. A. Lee, Phys. Rev. B 45, 966 (1992)

Energy x 0 Spin gap  Vortex cores

TlCuCl 3 M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/ Canted magnetic order Spin gap paramagnet

Phase diagram of SC and SDW order in a magnetic field E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, (2001).

Phase diagram of SC and SDW order in a magnetic field

B. Lake, H. M. Rønnow, N. B. Christensen, G. Aeppli, K. Lefmann, D. F. McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, T. E. Mason, Nature, 415, 299 (2002). See also S. Katano, M. Sato, K. Yamada, T. Suzuki, and T. Fukase, Phys. Rev. B 62, R14677 (2000).

Neutron scattering measurements of static spin correlations of the superconductor+spin-density-wave (SC+CM) in a magnetic field H (Tesla)

E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, (2001). Neutron scattering observation of SDW order enhanced by superflow. Phase diagram of a superconductor in a magnetic field

Neutron scattering measurements of dynamic spin correlations of the superconductor (SC) in a magnetic field B. Lake, G. Aeppli, K. N. Clausen, D. F. McMorrow, K. Lefmann, N. E. Hussey, N. Mangkorntong, M. Nohara, H. Takagi, T. E. Mason, and A. Schröder, Science 291, 1759 (2001).

Neutron scattering measurements of dynamic spin correlations of the superconductor (SC) in a magnetic field B. Lake, G. Aeppli, K. N. Clausen, D. F. McMorrow, K. Lefmann, N. E. Hussey, N. Mangkorntong, M. Nohara, H. Takagi, T. E. Mason, and A. Schröder, Science 291, 1759 (2001).

Collinear magnetic (spin density wave) order

E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, (2001). Neutron scattering observation of SDW order enhanced by superflow. Phase diagram of a superconductor in a magnetic field Prediction: SDW fluctuations enhanced by superflow and bond order pinned by vortex cores (no spins in vortices). Should be observable in STM K. Park and S. Sachdev Physical Review B 64, (2001); Y. Zhang, E. Demler and S. Sachdev, Physical Review B 66, (2002).

STM around vortices induced by a magnetic field in the superconducting state J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). Local density of states 1Å spatial resolution image of integrated LDOS of Bi 2 Sr 2 CaCu 2 O 8+  ( 1meV to 12 meV) at B=5 Tesla. S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000).

100Å b 7 pA 0 pA Vortex-induced LDOS of Bi 2 Sr 2 CaCu 2 O 8+  integrated from 1meV to 12meV J. Hoffman E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). Our interpretation: LDOS modulations are signals of bond order of period 4 revealed in vortex halo See also: S. A. Kivelson, E. Fradkin, V. Oganesyan, I. P. Bindloss, J. M. Tranquada, A. Kapitulnik, and C. Howald, cond- mat/

Conclusions I.Introduction to magnetic quantum criticality in coupled dimer antiferromagnet. II.Berry phases and bond order in square lattice antiferromagnets. III.Theory of quantum phase transitions provides semi- quantitative predictions for neutron scattering measurements of spin-density-wave order in superconductors; theory also proposes a connection to STM experiments. IV.Spontaneous bond order in spin gap state on the square lattice: possible connection to modulations observed in vortex halo. Conclusions I.Introduction to magnetic quantum criticality in coupled dimer antiferromagnet. II.Berry phases and bond order in square lattice antiferromagnets. III.Theory of quantum phase transitions provides semi- quantitative predictions for neutron scattering measurements of spin-density-wave order in superconductors; theory also proposes a connection to STM experiments. IV.Spontaneous bond order in spin gap state on the square lattice: possible connection to modulations observed in vortex halo.