September 16-19, 2008 Hamburg 2008 Olaf Scholten For the NuMoon collaboration KVI, Groningen.

Slides:



Advertisements
Similar presentations
JNM Dec Annecy, France The High Resolution Fly’s Eye John Matthews University of Utah Department of Physics and High Energy Astrophysics Institute.
Advertisements

High-energy particle acceleration in the shell of a supernova remnant F.A. Aharonian et al (the HESS Collaboration) Nature 432, 75 (2004) Nuclear Physics.
Observational techniques meeting #14. Topics for student talks: Cosmic microwave background: history + basic instrumentation CMB: recent developments.
Mathieu de Naurois, H.E.S.S.High Energy Phenomena in the Galacic Center H.E.S.S. Observations of the Galactic Center  The H.E.S.S. Instrument.
July 29, 2003; M.Chiba1 Study of salt neutrino detector for GZK neutrinos.
The NuMoon experiment: first results Stijn Buitink for the NuMoon collaboration Radboud University Nijmegen 20 th Rencontres de Blois, 2008 May 19.
LUNASKA LUNASKA: Towards UHE Particle Astronomy with the Moon and Radio Telescopes Clancy W. James, University of Adelaide (Supervisors: R. Protheroe,
Radio detection of UHE neutrinos E. Zas, USC Leeds July 23 rd 2004.
/AMvdBInt. WS Saltdome Shower Array SLAC 3-4 Feb Neutrino Detection in Salt Domes under LOFAR Ad M. van den Berg Kernfysisch Versneller.
Long Wavelength Array Exploring the Transient Universe with the Long Wavelength Array (LWA: Exploring the Transient Universe with the Long Wavelength Array.
Andreas Horneffer for the LOFAR Cosmic Ray KSP Air Shower Measurements with LOFAR Radboud University Nijmegen.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Heino Falcke Radboud University, Nijmegen ASTRON, Dwingeloo
PERSPECTIVES OF THE RADIO ASTRONOMICAL DETECTION OF EXTREMELY HIGH ENERGY NEUTRINOS BOMBARDING THE MOON R.D. Dagkesamanskii 1), I.M. Zheleznykh 2) and.
Radio Detection of High Energy Cosmic Ray Air Showers A short review XX th RENCONTRES DE BLOIS 18th - 23rd May 2008 “Challenges in Particle Astrophysics”
July 10, 2007 Detection of Askaryan radio pulses produced by cores of air showers. Suruj Seunarine, Amir Javaid, David Seckel, Philip Wahrlich, John Clem.
The LOFAR Cosmic Ray KSP
RADAR Detection of Extensive Air Showers Nils Scharf III. Physikalisches Institut A Bad Honnef Nils Scharf III. Physikalisches Institut A Bad.
8-Jan-2008ASPERA R&D Lisbon AMvdB1 R&D for Radio Detection Ad M. van den Berg R&D and Astroparticle Physics meeting 8 January 2008.
Radio Science Experiments on the Lunar Surface Jan Bergman & Lennart Åhlén The “NEXT” Lunar Radio Explorer Workshop ESTEC, Noordwijk, December 7, 2007.
Future Directions Radio A skaryan U nder ice R adio A rray Hagar Landsman Science Advisory Committee meeting March 1 st, Madison.
ANTARES  Physics motivation  Recent results  Outlook 4 senior physicists, ~5 PhD students, ~5 technicians M. de Jong RECFA 23 September 2005.
Short Time Fourier Transform-based method for fast transients detection Centre for eResearch, University of Auckland, New Zealand,
Development and Commissioning of LOFAR for Astronomy (DCLA) Huub Röttgering Leiden Observatory.
Low frequency radio- emission associated with UHE cosmic rays KALYANEE BORUAH Physics Department, Gauhati University.
Spencer Klein, LBNL & UC Berkeley n GZK Neutrinos n Radiodetection The moon as a cosmic target n ANITA – floating over Antarctica n Future experiments.
Mar 9, 2005 GZK Neutrinos Theory and Observation D. Seckel, Univ. of Delaware.
LOFAR LOw Frequency Array => most distant, high redshift Universe !? Consortium of international partners… Dutch ASTRON USA Haystack Observatory (MIT)
RFI Mitigation at Westerbork: algorithms, test observations, system implementation Willem Baan, Peter Fridman & Rob Millenaar.
ARENA2012, Erlangen June Lunar Space Missions for Ultrahigh- energy Cosmic Rays and Neutrinos Observation G. A. Gusev, V. A. Chechin, and V. A. Ryabov.
M.Chiba_ARENA20061 Measurement of Attenuation Length for Radio Wave in Natural Rock Salt and Performance of Detecting Ultra High- Energy Neutrinos M.Chiba,
The lunar Askaryan technique with the Square Kilometre Array Clancy James, Erlangen Centre for Astroparticle Physics (ECAP) 34th ICRC, The Hague, Netherlands.
CODALEMA A Cosmic Ray Radio Detection Array ICRC 2007, 3-11 July Merida, Mexico CODALEMA A Cosmic Ray Radio Detection Array Didier Lebrun, LPSC Grenoble.
Sept. 2010CRIS, Catania Olaf Scholten KVI, Groningen Physics Radio pulse results plans.
ANtarctic Impulsive Transient Antenna University of Hawaii at Manoa Peter Gorham, PI John Learned and Gary S. Varner Ohio-State University Jim Beatty and.
Feasibility of acoustic neutrino detection in ice: First results from the South Pole Acoustic Test Setup (SPATS) Justin Vandenbroucke (UC Berkeley) for.
Neutrinos and Z-bursts Dmitry Semikoz UCLA (Los Angeles) & INR (Moscow)
Evgeniya Kravchenko XI Russian-Finnish Symposium on Radio Astronomy October 19, 2010 Pushchino, Russia Ultra High Energy Neutrinos and radio method of.
RICE: ICRC 2001, Aug 13, Recent Results from RICE Analysis of August 2000 Data See also: HE228: Ice Properties (contribution) HE241: Shower Simulation.
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
Olivier Deligny for the Pierre Auger Collaboration IPN Orsay – CNRS/IN2P3 TAUP 2007, Sendai Limit to the diffuse flux of UHE ν at EeV energies from the.
Jeong, Yu Seon Yonsei University Neutrino and Cosmic Ray Signals from the Moon Jeong, Reno and Sarcevic, Astroparticle Physics 35 (2012) 383.
June 18-20, 2009 Detection of Askaryan radio pulses produced by cores of air showers. Suruj Seunarine, David Seckel, Pat Stengel, Amir Javaid, Shahid Hussain.
Near-Field Effects of Cherenkov Radiation Induced by Ultra High Energy Cosmic Neutrinos Chih‐Ching Chen Collaboration with Chia-Yu Hu and Pisin Chen LeCosPA.
Detecting Ultra High Energy Neutrinos with LOFAR M.Mevius for the LOFAR NuMoon and CR collaboration.
Radar for Salt Ultra-High-Energy Neutrino Detector and Contribution of W-Gluon Fusion Process to Collision of Neutrinos against Quarks Masami Chiba, Yoko.
Shih-Hao Wang 王士豪 Graduate Institute of Astrophysics & Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University 1 This.
Bergische Universität Wuppertal Jan Auffenberg et al. Rome, Arena ARENA 2008 A radio air shower detector to extend IceCube ● Three component air.
Future high energy extensions of IceCube with new technologies: Radio and/or acoustical detectors Karle.
Andreas Horneffer for the LOFAR-CR Team
Lunar Radio Cerenkov Observations of UHE Neutrinos
Detecting UHE cosmic-rays and neutrinos hitting the Moon
LUNASKA The Directional Dependence of the Lunar Cherenkov Technique in Regards to UHE Neutrino Detection -C.W. James (University of Adelaide) IF we want.
The Low Frequency Array (LOFAR)
Development of the 21CMA radio-detection array (Xinjiang/China) for the observation of UHE neutrinos showers Didier Charrier1, Pascal Lautridou1, Olivier.
Flux Limits for Ultra-High Energy Neutrinos
Topics The case for remote radio detection of neutrinos
TREND workshop agenda 0. Introduction and round-table
Andreas Horneffer for the LOFAR Cosmic Ray KSP
Ron Ekers CSIRO Ginzburg Conference on Physics
Design of the LORD Experiment and Perspectives of Ultra-High Energy
Cosmic ray and Neutrino Physics
Coherent radio-wave emission from extensive air showers.
LOFAR Lightning Imaging (LOFLI)
Lijo Thomas George, K. S. Dwarakanath
David Saltzberg (UCLA)
Trigger Strategy for LOPESSTAR
Acoustic vs radio vs optical detection of neutrino-induced cascades in ice and water Relevant papers by PBP: 1. Mechanisms of attenuation of acoustic.
for the Detection of UHE Cosmic Rays and Neutrinos
Presentation transcript:

September 16-19, 2008 Hamburg 2008 Olaf Scholten For the NuMoon collaboration KVI, Groningen

September 16-19, 2008 Hamburg 2008 Physics of Cosmic rays Spectrum is power law Flux ~ E -3 Non thermal spectrum! There must be sources! Where? What? End point? This talk: Measurement at highest E ( Area Moon = km 2 ) F(E) [ m 2 sr s GeV ] -1 E [eV ] ← 32 orders of magnitude  ← 12 orders of magnitude  ← 1 [m -2 s -1 ] 1 [km -2 y -1 ] UHECR E -2.7 

September 16-19, 2008 Hamburg 2008 Cosmic ray or neutrino 100MHz Radio waves Detection: LOFAR Principle of the measurement 10 7 km 2

September 16-19, 2008 Hamburg 2008 Askaryan effect: Coherent Cherenkov emission Leading cloud of electrons, v  c Typical size of order 10cm Coherent Čerenkov for ν  2-5 GHz cos θ c =1/n, θ c =56 o for ∞ shower length Length of shower, L  few m Important for angular spreading ~10 cm ~2 m Cosmic ray or neutrino shower Wave front nano second pulses

September 16-19, 2008 Hamburg 2008 Use Westerbork radio observatory NuMoon WSRT 4 frequencies

September 16-19, 2008 Hamburg 2008 Trigger: pulse in all four frequency bands + dedispersion 18 TB raw data per 6 hr slot TimeFrequency Excise RFI Trigger

September 16-19, 2008 Hamburg 2008 Trigger Power Spectrum Gaussian noise Effect successive steps in analysis

September 16-19, 2008 Hamburg 2008 Prelimenary Results Analysis of 20 h data Data taking is continuing NuMoon collaboration: O.S., Stijn Buitink, Heino Falcke, Ben Stappers, Kalpana Singh, Richard Strom

September 16-19, 2008 Hamburg 2008 Future: LOFAR SKA, 1 year, LFB: MHz MFB: MHz From: O.S., SKA Design Study report LOFAR Core 1 month E-LOFAR, 1 year

September 16-19, 2008 Hamburg 2008 Conclusions Detection of Ultra-High Enegy cosmic rays & neutrinos Physics: What are the sources? Challenge: implement real-time trigger in CEP LOFAR as observer of short (n-sec) intermittent pulses.