Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.

Slides:



Advertisements
Similar presentations
Int. Conf. II-VI 2007 Coherent Raman spectroscopy of Cd 1-x Mn x Te quantum wells Lowenna Smith, Daniel Wolverson, Stephen Bingham and J. John Davies Department.
Advertisements

A.V. Koudinov, Yu. G. Kusrayev A.F. Ioffe Physico-Technical Institute St.-Petersburg, Russia L. C. Smith, J. J. Davies, D. Wolverson Department.
Spintronics: How spin can act on charge carriers and vice versa
Coherently induced ferromagnetism in Diluted Magnetic Semiconductors Southampton, OCES9-SCES2 September 7 st 2005 Joaquín Fernández-Rossier Dept. Física.
Joaquín Fernández-Rossier (1) and L. Brey (2)
Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
Topics in Condensed Matter Physics Lecture Course for graduate students CFIF/Dep. Física Spin-dependent transport theory Vitalii Dugaev Winter semester:
QUANTUM TRANSPORT IN THE TUNNELING AND COTUNNELING REGIMENS Javier F. Nossa M.
Spintronics and Magnetic Semiconductors Joaquín Fernández-Rossier, Department of Applied Physics, University of Alicante (SPAIN) Alicante, June
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Quantum phase transitions in anisotropic dipolar magnets In collaboration with: Philip Stamp, Nicolas laflorencie Moshe Schechter University of British.
Technion – Israel Institute of Technology, Physics Department and Solid State Institute Entangled Photon Pairs from Semiconductor Quantum Dots Nikolay.
Spintronics = Spin + Electronics
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
Depts. of Applied Physics & Physics Yale University expt. K. Lehnert L. Spietz D. Schuster B. Turek Chalmers University K.Bladh D. Gunnarsson P. Delsing.
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Coulomb Blockade and Non-Fermi-Liquid Behavior in a Double-Dot Device Avraham Schiller Racah Institute of Physics Eran Lebanon (Rutgers University) Special.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Single Spin Detection J. Fernández-Rossier IUMA, Universidad de Alicante, Spain Manipulation and Measurement of the Quantum State of a single spin in a.
Optical spin transfer in GaAs:Mn Joaquin Fernandez-Rossier, Department of Applied Physics, University of Alicante (SPAIN) CECAM June 2003, Lyon (FR) cond-mat/
L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble,
Lecture 4 - Coulomb blockade & SET Fulton TA and Dolan GJ, Phys. Rev. Lett. 59 (1987) 109.
Exotic Kondo Effects and T K Enhancement in Mesoscopic Systems.
School of Physics and Astronomy, University of Nottingham, UK
Coherently photo-induced ferromagnetism in diluted magnetic semiconductors J. Fernandez-Rossier ( University of Alicante, UT ), C. Piermarocchi (MS), P.
Magnetoresistance in oxydized Ni nanocontacts Department of Applied Physics, U. Alicante, SPAIN D. Jacob, J. Fernández-Rossier, J. J. Palacios
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Theory of Optically Induced Magnetization Switching in GaAs:Mn J. Fernandez-Rossier, A. Núñez, M. Abolfath and A. H. MacDonald Department of Physics, University.
Sasha Kuntsevich Nimrod Teneh Vladimir Pudalov Spin-droplet state of an interacting 2D electron system M. Reznikov Magnetic order in clean low- density.
Dynamic response of a mesoscopic capacitor in the presence of strong electron interactions Yuji Hamamoto*, Thibaut Jonckheere, Takeo Kato*, Thierry Martin.
USING SPIN IN (FUTURE) ELECTRONIC DEVICES
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
Integrable Models and Applications Florence, September 2003 G. Morandi F. Ortolani E. Ercolessi C. Degli Esposti Boschi F. Anfuso S. Pasini P. Pieri.
Ferromagnetic semiconductors for spintronics Kevin Edmonds, Kaiyou Wang, Richard Campion, Devin Giddings, Nicola Farley, Tom Foxon, Bryan Gallagher, Tomas.
Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,
Spin-orbit coupling induced magneto-resistance effects in ferromagnetic semiconductor structures: TAMR, CBAMR, AMR Tomas Jungwirth University of Nottingham.
Chung-Hou Chung Collaborators:
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Electronic States and Transport in Quantum dot Ryosuke Yoshii YITP Hayakawa Laboratory.
Ferromagnetic and non-magnetic spintronic devices based on spin-orbit coupling Tomas Jungwirth Institute of Physics ASCR Alexander Shick University of.
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Electric-field controlled semiconductor spintronic devices
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Ferromagnetic semiconductor materials and spintronic transistors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion,
Www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance.
S. E. Thompson EEL Logic Devices Field Effect Devices –Si MOSFET –CNT-FET Coulomb Blockade Devices –Single Electron Devices Spintronics Resonant.
2D Topological insulator in HgTe quantum wells Z.D. Kvon Institute of Semiconductor Physics, Novosibirsk, Russia 1. Introduction. HgTe quantum wells. 2.
Www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA.
Coupling quantum dots to leads:Universality and QPT
Charge pumping in mesoscopic systems coupled to a superconducting lead
THE KONDO EFFECT IN CARBON NANOTUBES
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
Theory of current-driven domain wall motion - spin transfer and momentum transfer Gen Tatara 多々良 源 Graduate School of Science, Osaka University Hiroshi.
Spintronics in ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds,
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Extraordinary magnetoresistance in GaMnAs ohmic and Coulomb blockade devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Spin transport at the atomic scale Alexandre Reily Rocha and Stefano Sanvito Computational Spintronics Group Physics Department, Trinity College Dublin,
Tunable excitons in gated graphene systems
Dilute moment ferromagnetic semicinductors for spintronics
RESONANT TUNNELING IN CARBON NANOTUBE QUANTUM DOTS
Presented by: Bc. Roman Hollý
Presentation transcript:

Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of Madrid, CSIC SPAIN J. Fernández-Rossier, R. Aguado Spin dependent Capacitance Z19-1 Gate Tuning Anisotropy CdTe+1 Mn

GaMnAs Single electron transistor cond-mat/ Coulomb blockade anisotropic magnetoresistance: Single electronics meets spintronics Authors:J. Wunderlich et al.

Mn (2+) S=5/2 2S+1=6 PL Intensity Y. Léger et al., PRL 95, (05) L. Besombes et al. PRL 93, (04) Single Exciton Spectroscopy 1 Mn per dot

S T =S e +M Heisenberg Ising MzMz

Single exciton spectroscopy (1 Mn dot) EXPERIMENTS: Y. Léger et al. PRL 95, (05) THEORY: J. Fernández-Rossier, PRB73, (06) WE UNDERSTAND e+h+Mn

Theory I: The dot STATES NUMERICAL DIAGONALIZATION STATES WITH a FIXED NUMBER of CARRIERS (Controlled By Gate Voltage)

GATE CONTROL of Magnetic Anisotropy Heisenberg STST Q=-1Q=0Q=+1Q=+3 Free HH LH Ising Z XX MzMz

MASTER EQUATION Scattering Rates Theory: Single electron transport Density matrix ( V g, V b )

CHARGING the dot E Q=0 Q=1 Q=2 VGVG VGVG Q Q=0 Q=1 Q=2 G

CHARGING the dot S=3 S=2 Spin dependent CHARGING ENERGY 3 PEAKS instead of 1 !!

VGVG E

VGVG E

VGVG E

VGVG E Q=0

VGVG E Q=1/3

VGVG E Q=2/3

VGVG E Q=3/3

Inelastic single spin spectroscopy

CONCLUSIONS Electric Tuning of magnetic anisotropy Ising Z XX MzMz SPIN conditional charging energy Q=+1 Q=+3