Organic/BioChemistry
Inorganic vs. Organic
compound which usually does not contain carbon AND hydrogen Inorganic chemistry: compound which usually does not contain carbon AND hydrogen Ex. O3, NaCl, H2O, CO2
Inorganic Chemistry: Compounds that do not need to contain: Carbon: C AND Hydrogen: H
Biochemical Compounds A.K.A Organic chemistry: compounds usually found in Living or once living organisms contains both Carbon and Hydrogen other elements found in living things are: C, H, O, N, Phosphorous Carbon = “element of LIFE”
Carbon: The element of LIFE
Biochemical Compounds Types of Organic Compounds found in all living things include: Carbohydrates Lipids ProteiNs Nucleic Acids KNOW THESE!!!
Organic Chemistry: Organic Compounds (Carbs, lipids, Nucleic Acids, and Proteins) are chemically bonded together or broken down by: Dehydration Synthesis: Hydrolysis:
Dehydration Synthesis: process of joining (bonding) molecules to form large molecules called: MACROMOLECULES macromolecules are formed by REMOVING WATER!! Hence the name dehydration… as in dehydrate
Hydrolysis: process of breaking down macromolecules into smaller molecules called MONOMERS smaller molecules are formed by ADDING WATER!
dehydration synthesis small molecules (monomers) PROCESS STARTS WITH ... ENDS WITH ... Ex. dehydration synthesis small molecules (monomers) large molecules & water (macro-molecules) growth hydrolysis water & macromolecules small molecules (monomers) digestion
dehydration synthesis and hydrolysis
Organic Compounds Cont… Carbohydrates: Made of the elements Carbon, Hydrogen & Oxygen Usually the Carbon, Hydrogen and Oxygen have a 1:2:1 ratio Used in organisms for quick energy
Carbohydrate: a. Monosaccharide: simple sugar (1- ring) “ose” ending = sugar ex. Fructose, glucose:
Carbohydrate- Monosaccharide:
b. Disaccharide 2 simple sugars are chemically bonded together Carbohydrates: b. Disaccharide 2 simple sugars are chemically bonded together ex. Sucrose, lactose
Carbohydrate- Disaccharide:
C. Polysaccharide: Carbohydrates: many sugars chemically bonded together form long chains = polymers are macromolecules (lg molecules) ex. Starches, Chitin, and cellulose (found in fruits and veggies)
Carbohydrate- Polysaccharide 4 3 1 2
2 connected monosaccharide (ex: maltose) Elements Present Used by organisms for ... Building Blocks (Monomers) Related Terms & Info carbon hydrogen oxygen C:H:O = 1:2:1 always! Quick energy monosaccharide (simple sugars) ex: glucose Disaccharide: 2 connected monosaccharide (ex: maltose) Polysaccharide 3 or more connected monosaccharide (ex: starch, glycogen, chitin, cellulose)
Organic Compounds cont. Lipids: Fats, cholesterol, waxes, oils Lipids + H2O3 fatty acids +glycerol H to O ratio is much greater than 2:1 Do not EMULSIFY - break apart in H2O Used as Stored energy in organisms
3 Fatty Acids and a Glycerol: 1 2 3
Lipids 2 classifications of fats: Saturated fats Unsaturated fats (which includes polyunsaturated fats)
Lipids: Saturated fats: solid at room temperature linked to cardiovascular disease have many H-C bonds
Lipids: Unsaturated fats: not solids at room temp not associated with cardiovascular disease have 1 or more double C-C bonds polyunsaturated fats have more than 1 double or triple C-C bond
3 Fatty Acids 1 glycerol Elements Present Used by Organisms for ... Related Terms & Info Carbon Hydrogen Oxygen ONLY ! There is no specific H:O ratio. Stored Energy Structure (important part of cell membranes) saturated fat = C-C bonds are all single bonds unsaturated fat = contain at least one double or triple C-C bond Building Blocks of Lipids 3 Fatty Acids 1 glycerol
Topic: “chemistry of life”: STOP!!! CK POINT Topic: “chemistry of life”: What elements are found in carbohydrates and lipids? Explain 2 differences between carbohydrates and lipids. Describe the function for each? How are monomers bonded together? Broken apart?
Organic Compounds: NUCLEIC ACIDS: DNA & RNA We will save the nitty, gritty details of DNA & RNA for later in the year (Genetics). But for now, you should know there functions & basic structure, and how DNA compares to RNA.
DNA & RNA DNA & RNA are polymers (many units) --- long chains of smaller repeating units. The repeating unit (monomers) in nucleic acids is called a nucleotide.
nucleotide remember this !
nucleotide What elements make up a nucleotide? A phosphate group The carbohydrate… (see the “ring”?) A nitrogen base: Adenine Thymine Guanine Cytosine What elements make up a nucleotide?
Repeating Units of Nucleotides How many nucleotides are in the nucleic acid above?
Nucleic Acid: DNA
Nucleic Acid: RNA
DNA RNA Nucleic Acids: FULL NAME Deoxyribonucleic acid BASIC STRUCTURE 2 long twisting strands of nucleotides in the form of a "double helix" 1 single strand of nucleotides NUCLEOTIDE SUGAR Deoxyribose Ribose NITROGENOUS BASES guanine (G) cytosine (C) adenine (A) thymine (T) guanine (G) cytosine (C) adenine (A) uracil (U) LOCATION IN A CELL nucleus (the chromosomes) nucleus, in the cytoplasm, & at the ribosomes FUNCTION the hereditary material of a cell, directs & controls cell activities involved in protein synthesis
Organic Compounds: ProteiNs' Contain the elements: Carbon, Hydrogen, Oxygen and Nitrogen take the shape of coils, helixes and globules ex. Collagen, hormones, muscle tissue, enzymes, Hemoglobin
Structure of ProteiNs:
ProteiNs: Made up of basic building blocks MONOMERS called: AMINO ACIDS!!!!
Amino Acids: are the structural units (monomers) of protein bond together to form proteins The bond between amino acids are called Peptide bonds
Amino Acids: The order/sequence and size of amino acid determines the protein made 2 amino acids bonded together = dipeptide amino acids form long chains called a polypeptide chains
carbon hydrogen oxygen & NITROGEN Elements Present Used by organisms for ... Related Terms & Info carbon hydrogen oxygen & NITROGEN (sometimes Sulfur) muscles enzymes antibodies hormones Pigments Hemoglobin peptide bond = the bond that holds amino acids together in protein molecules dipeptide = 2 connected amino acids polypeptide = 3 or more connected amino acids monomers of Proteins: AMINO ACIDS!!!
Topic: “NA and ProteiNs”: STOP!!! CK POINT Topic: “NA and ProteiNs”: What are 2 types of Nucleic Acids? What is the “monomer” of a nucleic acid? Describe the primary functions of nucleic acids. Identify elements found in ProteiNs. What is the monomer for ProteiNs?
Group Activity: Group leaders to get a marker As a group, and when instructed, you will go to a poster in a designated area in the room When the timer begins WRITE 1 ACCURATE FACT Wait until instructed, move to the next poster. As you move to each poster, read each statement then add an additional fact
Enzymes: Are forms of protein!!!!!!!!!!!!! Usually end in “ASE” Are not changed during a chemical rxn (a substance affects a reaction w/o being changed is called a CATALYST)
Enzymes: Are organic catalysts : Are used over and over Control the rate of rxn within cells Catalysts allow rxns to occur at a faster rate Are used over and over For each chem. rxn, there is a specific enzyme to initiate the rxn
HOW ENZYMES WORK: Substrate- Enzyme Active- the substance the enzyme acts upon Enzyme Active- the region on the enzyme Substrate and Enzyme active site are specific to each other. The substrate fits the enzyme active site like a puzzle called: enzyme-substrate complex
HOW ENZYMES WORK: When the enzyme and substrate come together: may cause 2 molecules to join together may cause bonds to break
Enzyme-Substrate Complex
Enzyme-Substrate Complex
Factors Affecting Enzyme Action: Concentration and surface area Temperature pH Co-enzymes
Factors Affecting Enzyme Action: Concentration – determine rxn rates. Sometimes adding more concentration has little or no effect
Temperature– slowly raising the temp. increases rate. However, at higher temps., the enzyme can breakdown called Denaturation
temp and enzymes
pH level – specific to the enzyme stomach acidic, intestines slightly basic
Presence of coenzymes (vitamins) allows an enzyme to perform
Carbon Compounds 4 groups of carbon compounds found in living things are carbohydrates, lipids, nucleic acids, and protein. Living things use carbohydrates as their main source of energy. Plants and some animals also use carbohydrates for structural purposes. Lipids can be used to store energy. Some lipids are important parts of cell membranes and waterproofing. Nucleic acids store and transmit hereditary, or genetic, information. Proteins: control the rate of reactions and regulate cell processes. build tissues such as bone and muscle. Others transport materials or help to fight disease.
Chemical Reactions and Enzymes Chemical rxns always involve the breaking of bonds in reactants and the formation of new bonds in products. Cells use enzymes to speed up chemical reactions that take place in cells.