Light and Heavy Hadronic Modes in Medium Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Universität Bielefeld,
1. Motivation: Relativistic Heavy-Ion Collisions Au + Au → X e + e - Signatures of the QGP? Suppression of J/ -Mesons Decays of -Mesons Photons … J/
1.2 Current Status: Towards QGP Discovery So far: RHIC observables ↔ bulk properties of the produced matter: - energy density ≈20GeVfm -3 ↔ jet quenching (high-p t ) - thermalization + EoS ↔ hydrodynamics (v 0,v 2 ) - partonic degrees of freedom ↔ coalescence (p/ , v 2 -scal) Future: need to understand microscopic properties (phase transition, “QGP” !?): - Deconfinement ↔ quarkonia (J/ , , …) - Chiral Symmetry Restoration ↔ dileptons ( - temperature ↔ photons )
1. Introduction 2. Vacuum: Chiral Symmetry (Breaking) 3. (Light) Hadrons below T c 3.1 Mesons: 0 ± ( - ), 1 ± ( -a 1 ), Baryons: N, 3.2 Towards Chiral + Resonance Scheme 3.3 URHICs: Dileptons + Photons 4. Heavy-Quark Modes 4.1 Charmed Hadrons below T c 4.2 Heavy-Quark Equilibration 4.3 Quarkonia in the QGP 4.4 URHICs: Suppression vs. Regeneration 5. Conclusions Outline
2.) Chiral Symmetry in QCD: Vacuum SU(2) L × SU(2) R invariant (m u,d ≈0) Spontaneous Breaking: strong qq attraction Bose Condensate fills QCD vacuum! > > > > qLqL qRqR qLqL - qRqR - [cf. Superconductor: ‹ee›≠0 Magnet ‹ M ›≠0, … ] - Profound Consequences: energy gap: ↔ mass generation! massless Goldstone bosons 0,± “chiral partners” split, M≈0.5GeV: J P =0 ± 1 ± 1/2 ±
2.1 Light Hadrons: Vacuum Correlation Function: Timelike (q 2 >0) : Im q 0,q) → physical excitations =1 ± (qq) Chiral breaking: Q 2 < (1.5-2 GeV) 2, J ± < 5/2 (?!) (qqq)
2.2 “Melting” the Chiral Condensate How? Excite vacuum (hot+dense matter) quarks “percolate” / liberated Deconfinement ‹qq› condensate “melts”, iral Symm. chiral partners degenerate Restoration ( - , - a 1, … medium effects → precursor!) [GeVfm -3 ] 120, 0.5 , 2 0 175, 5 0 T[MeV], had PT many-body degrees of freedom? QGP (2 ↔ 2) (3-body,...) (resonances?) consistent extrapolate pQCD T/T c mm ‹qq› - lattice QCD
3. Hadrons in Medium: Light Sector (u,d) ± Mesons: and “ ” ± : (770) and a 1 (1260) 3.2 Chiral + Resonance Scheme 3.3 Baryons: (1232), N 3.4 Comparison to Lattice 3.5 URHICs: E.M. Probes (and Resonances)
3.1.1 Pion and Sigma in Medium D =[k k 2 - (k 0,k)] -1 > > = + N, N -1, -1 N prevalent, smeared at T>0 D → D at T c Precursor in nuclei ?! A→( ) S-Wave A URHICs: - fluct. (0,q→0) - M-spectra - (very) soft photons
> > B *,a 1,K 1... N, ,K … Constraints: - B,M→ N, - N, A, N→ N - QCDSRs, lattice (Axial-) Vector Mesons in Medium D (M,q: B,T)=[M 2 -m 2 - - B - M ] -1 (a) Hadronic Many-Body Theory Propagator: [Chanfray etal, Herrmann etal, RR etal, Koch etal, Weise etal, Post etal, Eletsky etal, Oset etal, …] (b) Effective Field Theory O HLS with L ≡ (“VM”); vacuum: loop exp. O (p/ , m / , g) In-Med.: T-dep. of bare m (0), g via matching to OPE, match < + RG-running to on-shell dropping -mass [Harada, Yamawaki, Sasaki etal]
[RR+Gale ’99] (i) -Mesons at SPS -meson “melts” in hot and dense matter baryon density B more important than temperature B / Hot+Dense Matter Hot Meson Gas [RR+Wambach ’99] [Eletsky etal ’01] Model Comparison [RR+Wambach ’99]
(ii) Vector Mesons at RHIC baryon effects important even at B,net =0 : sensitive to B,tot = + B, more robust ↔ OZI - e + e - Emission Rates: dR ee /dM ~ f B Im em Quark-Hadron Duality ?! in-med HG ≈ in-med QGP ! [qq→ee] [qq+O( s )] ----
(iii) Current Status of a 1 (1260) > > > > N(1520) … ,N(1900) … a1a Exp: - HADES ( A): a 1 →( + - ) - URHICs (A-A) : a 1 → 0 =
3.2 Towards a Chiral + Resonance Scheme Options for resonance implementation: (i) generate dynamically from pion cloud [Kolomeitsev etal ‘03, …] (ii) genuine resonances on quark level → representations of chiral group [DeTar+Kunihiro ‘89, Jido etal ’00, …] e.g. N + N(1535) - a 1 N(1520) - N(1900) + (1700) - (?) (1920) + SS PP SS SS SS SS PP SS SS (a 1 ) S Importance of baryon spectroscopy to identify relevant decay modes!
3.3 In-Medium Baryons: (1232) and N(939) long history in nuclear physics ! ( A, A ) e.g. nuclear photoabsorption: M , up by 20-40MeV little attention at finite temperature -Propagator at finite B and T [van Hees+RR ’04] in-medium vertex corrections incl. g’ -cloud, (“induced interaction”) (1+ f - f N ) thermal -gas →N(1440), N(1520), (1600) > > > > > > > > NN -1 N -1
in Nuclear Absorption in Nuclei and Heavy-Ion Collisions broadening: Bose factor, →B repulsion: N -1, NN -1 (1232) Spectral Fct. at RHIC Nucleon Spectral Fct. at RHIC substantial broadening due to resonant N → B scattering
3.4 Lattice Studies of Medium Effects calculated on lattice MEM extracted [Laermann, Karsch ’04]
Comparison of Hadronic Models to LGT calculate integrate More direct! Proof of principle, not yet meaningful (need unquenched)
3.5 Observables in URHICs (i) Dileptons (ii) Photons Im Π em (M,q) Im Π em (q 0 =q) e+e-e+e- γ baryon density effects! [Turbide,Gale+RR ’03] consistent with dileptons Brems with soft at low q?
4. Heavy-Quark Modes 4.1 Charmed Mesons below T c 4.2 Heavy-Quark Equilibration 4.3 Charmonium in QGP 4.4 URHICs: Suppression vs. Regeneration
4.1 Charmed Mesons in Hadronic Matter reduced threshold for → DD J/ robust ’ fragile: ’→ DD decays [ Grandchamp+RR ’03] m D (T, B ) expected to decrease (Chiral Symmetry Restoration) [Weise etal ’01]
1-D Fokker Planck Eq. scatt. rate diff. const. 4.2 Heavy-Quark Thermalization in QGP ? Naively: 1 scatt. Q 2 ≈ T 2, (p t,therm ) 2 ≈ m c T N scatt ≈(p t,therm /Q) 2 ≈5 more quantitative: Boltzmann Eq. [Svetitsky ’88] e.g.: pQCD Xsections, T=500MeV, s =0.6(0.3) =0.25 (0.06) fm -1 ↔ 4-15fm/c (very) slow! Resonance cross section c + q → “D” → c + q ?!
4.2.1 Resonant Open-Charm Rescattering effective model with pseudo/scalar + axial/vector “D-mesons” c + q → “D” → c + q “Light”-Quark Resonances 1.4T c [Asakawa+ Hatsuda ’03] _ _ chirally symmetric for light quarks heavy-quark symmetry j conserved to LO(1/m c ) parameters: m D (0), G D [van Hees+RR ’04]
4.2.2 Heavy-Quark Thermalization Times in QGP resonance scatt. isotropic secondary open-charm ?! [50% for ] [van Hees+RR ’04] pQCD “D” Charm Quarks Bottom vs. Charm bottom quarks “barely” thermalize at RHIC
4.2.3 Single-e ± Spectra at RHIC: D → e + X dynamical origin of resonances? cc production? onset of pQCD regime: p t >5-6GeV ? open bottom? _ [Müller etal ’95, Molnar’04] practically indistinguishable PHENIX 130AGeV e±e± B D [Batsouli etal. ’02] p t -Spectra: p-p vs Hydro Ellitpic Flow + Coalescence jet- quench [Djordjevic etal ’04] does charm equilibrate?
4.2 Charmonium in QGP Lattice: c, J/ survive up to ~2T c mass m ≈ const ~ 2m c * width: [Datta etal ’03] gluo-dissociation “quasifree” diss. [Bhanot+Peskin ‘84] [Grandchamp+RR ‘01] Cross Sections Dissociation Times
“jumps” at T c sensitive to rather direct link to lattice QCD! Charmonium Regeneration vs. Suppression statistical coalescence at T c : chem.+therm. equil. charmonia above T c formation in QGP: detailed balance! for thermalized c-quarks: Equilibration close to T c ?! [PBM etal ’01, Gorenstein etal ’02, …] [Thews etal ’01, Ko etal ’02 … Grandchamp+RR ’02] J/ + g c + c + X ← → -
QGP regeneration dominant sensitive to: m c *, open-charm degeneracy, (N cc ) 2 ↔ rapidity, √s, A [Grandchamp +RR ’03] Charmonium in A-A SPS RHIC J/ Excitation Function
[Lumpkins, Grandchamp, van Hees, Sun +RR ’05] Upsilon in A-A RHIC LHC bottomonium suppression as unique QGP signature ?! caveat: equil. number (very) sensitive to (m b )*, therm
5. Conclusions Hadronic Many-Body Theory can provide: - valuable insights into hadron properties in medium - understanding of observables in nuclear reactions The physics is often in the width (exception: e.g. “ ”) Interpretations? - many spectral properties appear to vary smoothly - connections to phase transition to be established - need nonperturbative symmetry-conserving approach, e.g. selfconsistent -derivable thermodyn. potential
Additional Slides
(iii) Resonance Spectroscopy I: + - Spectra Sudden Breakup Emission Rate [Broniowski+Florkowski ’03] -mass shift ~ -50MeV small “ ” contribution underestimates [Shuryak+ Brown ’03] Broadening+“ ”+BE not enough?!
(iv) Resonance Spectroscopy II : + p Spectra NN Qualitatively in line with data ( eV, MeV) [courtesy P. Fachini] (1232) at RHIC eV ±15)MeV mean-field: (1232) Spectral Fct. at RHIC
(ii) (1232) in URHICs broadening: Bose factor, →B repulsion: N -1, NN -1 not yet included: ( N↔
Direct Photons at SPS and RHIC large “pre-equilibrium” yield from parton cascade (no LPM) thermal yields ~ consistent QGP undersaturation small effect pQCD Cronin ~ π 0 T 0 ≈205MeV sufficient new WA98 points: -Bremsstr. via soft ? [Turbide etal]
J/ Width from Lattice QCD
E.M. Emission Rates [RR+Wambach ’99] 3.1 Continuity?! Light Hadron “Masses” However: peak in susceptibilities at T c ↔ m → 0 Observables ? e + e - + , fluct, , J/ [Shuryak, Zahed, Brown ’04] [Turbide,Gale+RR ’03]
3.3 Light Hadrons in QGP “Resonance” matter at 1-2T c ?! - EoS can be ok [ Shuryak+Zahed’04 ] assess formation rates from inelastic reactions (as in charmonium case): q+q ↔ “ ”+X, etc. solve (coupled) rate equations accounts for energy conservation, no “sudden” approximation -formation more reliable To be resolved: quark masses are not “constituent”: role of gluons? (not really heavier than quarks…), … generalizes coalescence [Greco,Ko+RR, in progress]
RHIC central: N cc ≈10-20, QCD lattice: J/ ’s to ~2T c 4.3 Charm II: Charmonium Regeneration in QGP / at T c J/ + g c + c + X → ← [PBM etal, Thews etal] N part [Grandchamp] sensitivity to m c * - If c-quarks thermalize:
3.4 Hydro vs. Coalescence: The 2-6GeV Regime v 2 : mass-dependent But: p/ (4GeV)≈0.3 [PHENIX]: 1±0.15 [Hirano,Nara] Challenges: p/ =1 + jet correlation, elliptic flow [Fries,Hwa,Molnar] universal partonic v 2 (p T /n) / n soft-soft ≈ thermal ( p T » m ) soft-hard: explicit thermal+jet (correlations!) [Greco et al.] [PHENIX] [STAR]