О.О.Замков, Дж.Л.Локшин Тестирование как форма текущего и итогового контроля в учебном процессе МИЭФ ГУ-ВШЭ.

Slides:



Advertisements
Similar presentations
COINTEGRATION 1 The next topic is cointegration. Suppose that you have two nonstationary series X and Y and you hypothesize that Y is a linear function.
Advertisements

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LGDPI) Method: Least Squares Sample (adjusted): Included observations: 44 after adjustments.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 13) Slideshow: tests of nonstationarity: example and further complications Original.
============================================================ Dependent Variable: LGHOUS Method: Least Squares Sample: Included observations:
AUTOCORRELATION 1 The third Gauss-Markov condition is that the values of the disturbance term in the observations in the sample be generated independently.
FITTING MODELS WITH NONSTATIONARY TIME SERIES 1 Detrending Early macroeconomic models tended to produce poor forecasts, despite having excellent sample-period.
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Three Ending Tuesday, September 11 (Note: You must go over these slides and complete every.
Chapter 4 Using Regression to Estimate Trends Trend Models zLinear trend, zQuadratic trend zCubic trend zExponential trend.
1 TIME SERIES MODELS: STATIC MODELS AND MODELS WITH LAGS In this sequence we will make an initial exploration of the determinants of aggregate consumer.
LOGO Analysis of Unemployment Qi Li Trung Le David Petit Brian Weinberg Dwaraka Polakam Doug Skipper-Dotta Team #4.
NBA Statistical Analysis Econ 240A. Intro. to Econometrics. Fall Group 3 Lu Mao Ying Fan Matthew Koson Ryan Knefel Eric Johnson Tyler Nelson Grop.
Angela Sordello Christopher Friedberg Can Shen Hui Lai Hui Wang Fang Guo.
Factors Determining the Price Of Used Mid- Compact Size Vehicles Team 4.
1 Lecture Twelve. 2 Outline Failure Time Analysis Linear Probability Model Poisson Distribution.
TAKE HOME PROJECT 2 Group C: Robert Matarazzo, Michael Stromberg, Yuxing Zhang, Yin Chu, Leslie Wei, and Kurtis Hollar.
Marietta College Week 14 1 Tuesday, April 12 2 Exam 3: Monday, April 25, 12- 2:30PM Bring your laptops to class on Thursday too.
1 Econ 240 C Lecture 3. 2 Part I Modeling Economic Time Series.
1 Econ 240 C Lecture White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output.
Is There a Difference?. How Should You Vote? Is “Big Government” better?Is “Big Government” better? –Republicans want less government involvement. –Democrats.
Global Warming: Is It True? Peter Fuller Odeliah Greene Amanda Smith May Zin.
1 Econ 240 C Lecture Time Series Concepts Analysis and Synthesis.
Determents of Housing Prices. What & WHY Our goal was to discover the determents of rising home prices and to identify any anomies in historic housing.
NEW MODELS FOR HIGH AND LOW FREQUENCY VOLATILITY Robert Engle NYU Salomon Center Derivatives Research Project Derivatives Research Project.
Car Sales Analysis of monthly sales of light weight vehicles. Laura Pomella Karen Chang Heidi Braunger David Parker Derek Shum Mike Hu.
1 Econ 240 C Lecture 3. 2 Time Series Concepts Analysis and Synthesis.
Why Can’t I Afford a Home? By: Philippe Bonnan Emelia Bragadottir Troy Dewitt Anders Graham S. Matthew Scott Lingli Tang.
1 Motor Vehicle Accidents Hunjung Kim Melissa Manfredonia Heidi Braunger Yaming Liu Jo-Yu Mao Grace Lee December 1, 2005 Econ 240A Project.
1 Econ 240A Power 7. 2 This Week, So Far §Normal Distribution §Lab Three: Sampling Distributions §Interval Estimation and HypothesisTesting.
Determining what factors have an impact on the burglary rate in the United States Team 7 : Adam Fletcher, Branko Djapic, Ivan Montiel, Chayaporn Lertarattanapaiboon,
Violent Crime in America ECON 240A Group 4 Thursday 3 December 2009.
Lecture Week 3 Topics in Regression Analysis. Overview Multiple regression Dummy variables Tests of restrictions 2 nd hour: some issues in cost of capital.
Alcohol Consumption Allyson Cady Dave Klotz Brandon DeMille Chris Ross.
California Expenditure VS. Immigration By: Daniel Jiang, Keith Cochran, Justin Adams, Hung Lam, Steven Carlson, Gregory Wiefel Fall 2003.
So far, we have considered regression models with dummy variables of independent variables. In this lecture, we will study regression models whose dependent.
1 Lecture One Econ 240C. 2 Outline Pooling Time Series and Cross- Section Review: Analysis of Variance –one-way ANOVA –two-way ANOVA Pooling Examples.
GDP Published by: Bureau of Economic Analysis Frequency: Quarterly Period Covered: prior quarter Volatility: Moderate Market significance: very high Web.
MLB STATS Group SIX Astrid AmsallemJoel De Martini Naiwen ChangQi He Wenjie HuangWesley Thibault.
1 Lecture One Econ 240C. 2 Einstein’s blackboard, Theory of relativity, Oxford, 1931.
1 Power Fifteen Analysis of Variance (ANOVA). 2 Analysis of Variance w One-Way ANOVA Tabular Regression w Two-Way ANOVA Tabular Regression.
1 Econ 240A Power 7. 2 Last Week §Normal Distribution §Lab Three: Sampling Distributions §Interval Estimation and HypothesisTesting.
Zhen Tian Jeff Lee Visut Hemithi Huan Zhang Diana Aguilar Yuli Yan A Deep Analysis of A Random Walk.
1 Power Fifteen Analysis of Variance (ANOVA). 2 Analysis of Variance w One-Way ANOVA Tabular Regression w Two-Way ANOVA Tabular Regression.
Forecasting Fed Funds Rate Group 4 Neelima Akkannapragada Chayaporn Lertrattanapaiboon Anthony Mak Joseph Singh Corinna Traumueller Hyo Joon You.
U.S. Tax Revenues and Policy Implications A Time Series Approach Group C: Liu He Guizi Li Chien-ju Lin Lyle Kaplan-Reinig Matthew Routh Eduardo Velasquez.
Matt Mullens Gulsah Gunenc Alex Keyfes Gaoyuan Tian Andrew Booth.
EC220 - Introduction to econometrics (chapter 12)
DURBIN–WATSON TEST FOR AR(1) AUTOCORRELATION
FORECASTING WITH REGRESSION MODELS TREND ANALYSIS BUSINESS FORECASTING Prof. Dr. Burç Ülengin ITU MANAGEMENT ENGINEERING FACULTY FALL 2011.
What decides the price of used cars? Group 1 Jessica Aguirre Keith Cody Rui Feng Jennifer Griffeth Joonhee Lee Hans-Jakob Lothe Teng Wang.
A N E MPIRICAL A NALYSIS OF P ASS -T HROUGH OF O IL P RICES TO I NFLATION : E VIDENCE FROM N IGERIA. * AUWAL, Umar Department of Economics, Ahmadu Bello.
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Five Ending Wednesday, September 26 (Note: Exam 1 is on September 27)
Electric Utility Cost Data for Electricity Generation by Nerlove and Christensen-Greene Data is similar to Electric Utility data described in McGuigan.
The Academy of Economic Studies Bucharest Doctoral School of Banking and Finance DISSERTATION PAPER CENTRAL BANK REACTION FUNCTION MSc. Student: ANDRA.
1 Economics 240A Power Eight. 2 Outline n Maximum Likelihood Estimation n The UC Budget Again n Regression Models n The Income Generating Process for.
NONPARAMETRIC MODELING OF THE CROSS- MARKET FEEDBACK EFFECT.
SPURIOUS REGRESSIONS 1 In a famous Monte Carlo experiment, Granger and Newbold fitted the model Y t =  1 +  2 X t + u t where Y t and X t were independently-generated.
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Four Ending Wednesday, September 19 (Assignment 4 which is included in this study guide.
PARTIAL ADJUSTMENT 1 The idea behind the partial adjustment model is that, while a dependent variable Y may be related to an explanatory variable X, there.
AUTOCORRELATION 1 Assumption C.5 states that the values of the disturbance term in the observations in the sample are generated independently of each other.
2010, ECON Hypothesis Testing 1: Single Coefficient Review of hypothesis testing Testing single coefficient Interval estimation Objectives.
FUNCTIONAL FORMS OF REGRESSION MODELS Application 5.
Air pollution is the introduction of chemicals and biological materials into the atmosphere that causes damage to the natural environment. We focused.
With the support of the European Commission 1 Competitiveness of the SME’s in Albania A review of the business conditions with a focus on financing conditions.
Partial Equilibrium Framework Empirical Evidence for Argentina ( )
Page 0 Modelling Effective Office Rents by Matt Hall DTZ, 125 Old Broad Street, London, EC2N 2BQ Tel: +44 (0)
T HE SAT S CORES TELL A STORY OF THE U.S. D EMOGRAPHIC ECON 240A.
WSUG M AY 2012 EViews, S-Plus and R Damian Staszek Bristol Water.
المبادلة بين العائد و المخاطرة دراسة قياسية السنة الدراســــــــية:
Table 4. Regression Statistics for the Model
Presentation transcript:

О.О.Замков, Дж.Л.Локшин Тестирование как форма текущего и итогового контроля в учебном процессе МИЭФ ГУ-ВШЭ

Преимущества и недостатки тестирования как формы контроля знаний Преимущества: -Широкий охват области контроля -Быстрота проведения и проверки тестов -Объективность результатов Недостатки: -Ограниченная возможность проверки глубины понимания предмета -Недостаточность или отсутствие проверки ряда важных способностей и навыков (академическое письмо и рассуждения, презентация, нестандартное мышление) -Возможность угадывать ответ

Тесты Advanced Placement Tests в программе первого курса МИЭФ Формат экзаменов (Multiple Choice + Free Response) Предметы: Микроэкономика, Макроэкономика, Математический анализ, Статистика Организация, условия и порядок проведения экзаменов

Расчет оценки за экзамен (на примере мат. анализа) MC (50%) + FR (50%); MC: 28 задач без калькулятора, 17 – с калькулятором; Среднее время на одну задачу: 2 минуты для задачи без калькулятора, 2:30 – для задачи с калькулятором; В каждой задаче MC дается 5 вариантов ответа; за неправильный ответ снимается ¼ балла; Задания даны в печатном виде, и ответы заносятся на специальный ответный лист.

Примеры тестовых заданий: At what value of x does the function f(x) = 3x 4 – 4x 3 –12x 2 +1 attain its maximum value on [–2,3]? a) –2 b) –1 c) 0 d) 2 e) 3

Результаты экзаменов APT студентов МИЭФ (средние баллы)

Подготовка к экзаменам APT (тестовая часть и открытые вопросы) в МИЭФ Программы курсов и особенности преподавания Учебные материалы: банки тестов, руководства Стратегия сдачи экзамена для студента График и содержание пробных тестирований Прогнозирование результатов APT

Тестирование на 2-4 курсах программы МИЭФ Лондонский университет не использует тестов в экзаменационных работах Использование тестов для текущего контроля и как часть экзамена в МИЭФ Тесты в курсах Эконометрики, Правоведения, Линейной алгебры Эконометрика: еженедельный 10- минутный тест и тестовая часть экзаменов МИЭФ. Банк тестов.

Примеры тестовых заданий: The following semi-logarithmic model is estimated: logY = b1 + b2 X2 + u. Interpretation of the coefficient b2 is the following: 1) If X2 increases for one unit then Y increases approximately for 100b2 per cent; 2) If X2 increases for one unit then Y increases approximately for b2/100 per cent; 3) If X2 increases for one per cent then Y increases approximately for 100b2 units; 4) If X2 increases for one per cent then Y increases approximately for b2/100 units; 5) If X2 increases for one per cent then Y increases approximately for b2 per cent.

Примеры тестовых заданий: The following model of a short-term equilibrium for small open economy (Mundell-Flemming model) is given: Y = C + I + NX- macroeconomic identity C =  +  Y + u- consumption function I =  –  R + Y+ v- investment function NX =  -  Y -  E+ w- net exports function (M/P) =  Y –  R+ s- money market equation where income Y, consumption C, investment I, net exports NX and exchange rate E are the endogenous variables. Variables R (interest rate which is set at the world level) and (M/P) (real money supply) are exogenous; u, v, w, s are the disturbance terms. Indicate the correct statement: 1) net exports function is overidentified; 2) net exports function is exactly identified; 3) investment function is underidentified; 4) investment function is overidentified; 5) consumption function is exactly identified.

Пост-прогноз результатов теста (Эконометрика, 3 курс, 2010, январский экзамен, 25% экзамена, 12 тестов) Dependent Variable: MCH01 Method: Least Squares Date: 04/27/10 Time: 18:20 Sample (adjusted): 1 87 Included observations: 66 after adjustments VariableCoefficientStd. Errort-StatisticProb. C OCT STAT R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood Hannan-Quinn criter F-statistic Durbin-Watson stat Prob(F-statistic)

Пост-прогноз результатов части 2 (Эконометрика, 3 курс, 2010, январский экзамен, открытые вопросы, 75% экзамена) Dependent Variable: FR01 Method: Least Squares Date: 02/09/10 Time: 18:35 Sample (adjusted): 1 87 Included observations: 66 after adjustments VariableCoefficientStd. Errort-StatisticProb. C FR STAT GR HANUM LEC R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)