1 Collaborators Johan Durand, CEA - Saclay Jun He, CEA - Saclay Zhenping Li, Univ. of Maryland Qiang Zhao, IHEP - Beijing PLAN:  Motivations  Chiral.

Slides:



Advertisements
Similar presentations
Η photo-production off nucleons Some evidence of D 15 (2080) in the reaction Xian-Hui Zhong Hunan Normal University In collaboration with Qiang Zhao.
Advertisements

1 Study of N* excitations in 2-pion production. 2 Analysis of  +  - p single differential cross-sections.  p  -  ++ p+0p+0 pppp 
Electroexcitation of the Roper resonance from CLAS data Inna Aznauryan, Volker Burkert Jefferson Lab N * 2007, Bonn, September 7, 2007.
Hypernuclear Physics - electroproduction of hypernuclei Petr Bydžovský in collaboration with Miloslav Sotona Nuclear Physics Institute, Řež near Prague,
Qiang Zhao Institute of High Energy Physics, CAS and Theoretical Physics Center for Science Facilities (TPCSF), CAS Chiral quark model approach for the.
Excitation of the Roper Resonance in Single- and Double-Pion Production in NN collisions Roper‘s resonance Roper‘s resonance a resonance without seeing.
Qiang Zhao Institute of High Energy Physics, CAS, P.R. China Department of Physics, University of Surrey, U.K. Baryons in a potential quark model Selection.
Eugene Pasyuk Jefferson Lab for the CLAS Collaboration Moscow, September 20-23, 2012 XIII International Seminar on Electromagnetic Interactions of Nuclei.
Ralf W. Gothe Nucleon Transition Form Factors Beijing Transition Form Factors at JLab: The Evolution of Baryonic Degrees of Freedom Ralf W. Gothe.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Dynamical Coupled Channel Approach for Meson Production Reaction T. Sato Osaka U./KEK  Motivation  Analysis of meson production reaction and dynamical.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
Qiang Zhao Centre for Nuclear and Radiation Physics Department of Physics, University of Surrey, Guildford, U.K. Locality of quark-hadron duality and its.
K +  photoproduction with the Crystal Ball at MAMI T.C. Jude The University of Edinburgh New method of K + detection with the Crystal Ball Extraction.
Motivation. Why study ground state hyperon electroproduction? CLAS detector and analysis. Analysis results. Current status and future work. M. Gabrielyan.
Nucleon resonance studies in π + π - electroproduction off protons at high photon virtualities E. Isupov, EMIN-2009.
K*Λ(1116) Photoproduction and Nucleon resonances K*Λ(1116) Photoproduction and Nucleon resonances Sang-Ho Kim( 金相鎬 ) (NTG, Inha University, Korea) In collaboration.
Baryon Spectroscopy: Recent Results and Impact – , Erice R. Beck HISKP, University of Bonn Introduction Impact of the new Polarization.
Magnetic moments of baryon resonances Teilprojekt A3 Volker Metag II. Physikalisches Institut Universität Giessen Germany SFB/TR16 Mitgliederversammlung.
N* Production in α-p and p-p Scattering (Study of the Breathing Mode of the Nucleon) Investigation of the Scalar Structure of baryons (related to strong.
Dynamical Coupled-Channels Approach for Single- and Double-Pion Electroproductions: Status and Plans Hiroyuki Kamano Research Center for Nuclear Physics.
Dynamical coupled-channels analysis of meson production reactions at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration.
Hyun-Chul Kim Department of Physics Inha University In collaboration with H.Y. Ryu, A. Hosaka, A. Titov EFB 22, Sept. 10, meson photoproduction.
Baryon spectrum and structure with the CLAS detector at JLab Philip L Cole Idaho State University September 20, 2012 XIII International Seminar on Electromagnetic.
Dynamical coupled-channels study of meson production reactions from Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) MENU2010,
Photo-production of strange mesons with polarized photons and targets Eugene Pasyuk Jefferson Lab XIV International Seminar on Electromagnetic Interactions.
Nstars: Open Questions Nstars: Open Questions L. Tiator, Institut für Kernphysik, Universität Mainz  Introduction  Roper and S 11  the role of the D.
Kaon Production on the Nucleon D. G. Ireland MENU Rome, September 30 – October 4, 2013.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
June 16-20, 2005 北京 1 Atsushi Hosaka (RCNP, Osaka Univ) Decay and production of  + hep-ph/ , PRD71: (2005) A. H., M. Oka and T. Shinozaki.
Results of Nucleon Resonance Extraction via Dynamical Coupled-Channels Analysis from EBAC Hiroyuki Kamano (RCNP, Osaka U.) QNP2012, Palaiseau,
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
Measuring the Spin Structure of 3 He and the Neutron at Low Q 2 Timothy Holmstrom College of William and Mary For the Jefferson Lab Hall A Collaboration.
Meson Photoproduction with Polarized Targets   production a)  0 at threshold b) Roper and P 11 (1710)   production a) S 11 -D 13 phase rotation.
Daniel S. Carman Page 1 Hadron Sep , 2015 Daniel S. Carman Jefferson Laboratory N* Spectrum & Structure Analysis of CLAS Data  CLAS12 N*
1 Longitudinal and transverse helicity amplitudes of nucleon resonances in a constituent quark model - bare vs dressed resonance couplings Introduction.
Thomas Jefferson National Accelerator Facility November
TAPS October 2004  Martin Kotulla, University Basel Magnetic Moment of the S 11 (1535) Resonance.
Dynamical Coupled-Channels Approach to Meson Production Reactions and N* Spectroscopy Hiroyuki Kamano (RCNP, Osaka U.) April 11, 2012.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Nucleon Resonances from DCC Analysis of for Confinement Physics T.-S. Harry Lee Argonne National Laboratory Workshop on “Confinement.
Dynamical coupled-channels approach to meson production reactions in the N* region and its application to neutrino-nucleon/nucleus reactions Hiroyuki Kamano.
Study of Excited Nucleon States at EBAC: Status and Plans Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz,
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Overview of the progress B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain) The players: ¨
The status of the Excited Baryon Analysis Center B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain)
Shin Nan Yang National Taiwan University Collaborators: Guan Yeu Chen (Taipei) Sabit S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) DMT dynamical model.
Allows to address central question: “ What are the relevant degrees-of-freedom at varying distance scale ?” N π,  B=N,N*,  * q q q e e' ** e.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
Transition region (1) Transition region (2) Scaling (s-, Q 2,…) (3) Generalized Parton Distribution (4) Transition Distribution Amplitude (5) …
Reaction models of meson production reactions B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain)
Photoproduction of Cascade baryons Yongseok Oh (UGA) H. Haberzettl (GWU) K. Nakayama (UGA) nucl- th/
N* Transition Form Factors with CLAS12 Kyungseon Joo University of Connecticut For the CLAS Collaboration Exclusive Reactions at High Momentum Transfer.
Study of nucleon resonances at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz, T.-S. H.
Dynamical coupled-channels study of hadron resonances and strangeness production Hiroyuki Kamano (RCNP, Osaka U.) in collaboration with B. Julia-Diaz (Barcelona.
Qiang Zhao Theory Division Institute of High Energy Physics, CAS Update of quark model calculations for vector meson photoproduction.
1.More than 98% of dress quark masses as well as dynamical structure are generated non-perturbatively through DCSB (higgs mech.
The hypercentral Constituent Quark Model
EBAC-DCC analysis of world data on pN, gN, and N(e,e’) reactions
Vector meson photoproduction
K. Hicks, Ohio Univesity CLAS Collaboration Meeting Nov. 4, 2016
Property of first orbital excitation baryons
Meson Production reaction on the N* resonance region
Low energy reaction π- p→ K0Λ and the properties of N*(1720)
Current Status of EBAC Project
Michael Dugger* Arizona State University
Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab)
Presentation transcript:

1 Collaborators Johan Durand, CEA - Saclay Jun He, CEA - Saclay Zhenping Li, Univ. of Maryland Qiang Zhao, IHEP - Beijing PLAN:  Motivations  Chiral constituent quark approach  Results for  p → ηp ; E  Lab ≈ 0.7 to 3.0 GeV  W ≈ 1.5 to 2.6 GeV  M N*  Role of N*s: “known” and “New”  Summary & concluding remarks NSTAR2007, Bonn, Sept. 5, ’07 Chiral constituent quark model study of the process  p → ηp Bijan Saghai CEA – Saclay

2 New generation of data for  p  ηp Lab / Collaboration Observable (GeV) # of data points Reference MAMI / TAPS dσ / dΩ0.716 – B. Krusche et al., PRL 74, 3736 (1995) ELSA/ PHOENICS T0.717 – A. Bock et al., PRL 81, 534 (1998) JLab / CLAS dσ / dΩ0.775 – M. Dugger et al., PRL 89, (2002) ELSA / CB dσ / dΩ0.775 – V. Credé et al., PRL 94, (2005) LNS dσ / dΩ0.718 – T. Nakabayashi et al.,PR C74, (2006) GRAAL dσ / dΩ Σ – – O. Bartalini et al., EPJ A (2007) [PRL 81, 1797 (1998); PL B528, 215 (2002)] ELSA / CB-TAPS Σ0.843 – D. Elsner et al., nucl-ex/

3 What do we learn from those data? Need a formalism robust enough to  Allow embodying all known N*s (i.e. PDG, one to four star resonances)  Introduce new resonances reported by several authors S 11, P 11, P 13, D 13, D 15 & H 1,11  Build a model with “reasonable” number of adjustable parameters

4. 3 rd S 11 M [Γ] (MeV) APPROACHREF. 1945Constituent quark model (CQM)Capstick & Roberts, PRD 49 (1994) 1712 [184]KY quasi-bound stateLi & Workman, PRC 53 (1996) 1792 [360] Coupled channel analysis N → N, ηN & ηN → ηN Batinic et al., nucl-th/ [280] Constituent quark model (CQM) p → ηp Saghai & Li, EPJ A11 (2001) ; nucl-th/ (N* 2002) 1861Hypercentral CQMGiannini et al.,nucl-th/ Coupled channel analysis  N →  N & γ N →  N G.-Y. Chen et al., NP A723 (2003) 1945Reggeized isobar model γ p → η′pW.T. Chiang et al., PRC 68 (2003) 1825 [160]Isobar model γ p → ηpV.A. Trasuchev, EPJ A22 (2004) 1806 [300]Coupled-channel & CQM γ p → K + ΛB. Juliá-Díaz et al., PRC 73 (2006)

5 3 rd P 13 M [Γ] (MeV) APPROACHREF. 1870, 1910, 1950, 2030 Constituent quark modelCapstick & Roberts, PRD 49 (1994) 1816, 1894, 1939 Hypercentral CQMGiannini et al., nucl-th/ [165] BES Collaboration Data J/ψ → π + n, π - p Ablikim et al., PRL 97 (2006); Fang et al., Int. J. Mod. Phys. A21 (2006) 1893 [204] Coupled-channel & CQM p → K + Λ B. Juliá-Díaz et al, PRC 73 (2006) 3 rd D Constituent quark modelCapstick & Roberts, PRD 49 (1994) 1895 Isobar model γ p → K + Λ Mart & Bennhold, PRC 61 (1999) 1875 [80] Isobar model γ p → N, ηN, K + Λ, K + Σ°, K ° Σ + Anisovich et al. EPJ A25 (2005); Sarantsev et al., EPJ A25 (2005) 1954 [249] Coupled-channel & CQM  p → K + Λ B. Juliá-Díaz et al., PRC 73 (2006)

6 Additional P 11, D 15 & H 1,11 resonances?  Anisovich et al., EPJ A 25 (2005) 427 ; Isobar model, γp  πN, ηN: P 11 (1840), D 15 (1875) ↔ D 15 (2200) in PDG?  Sarantsev et al., EPJ A 25 (2005) 441 ; Isobar model, γ p  Κ + Λ, Κ + Σ°, Κ°Σ + : P 11 (1840)  Corthals et al., PRC 73 (2006) ; Regge + Resonance Approach, γ p  Κ + Λ: P 11 (1900)  Arndt et al., PRC 74 (2006) , EPWA, πN  πN, ηN: H 1,11 (2247)

7 Present approach p → ηp Chiral Constituent Quark Model Starting point: low energy QCD Lagrangian derived by Manohar & Georgi, Nucl. Phys. B234 (1984), which ensures that the meson-baryon interaction is invariant under the chiral transformation

8 Chiral Constituent Quark Model

9 SU(6)  O(3) symmetry predicts: C 2 N* = 0 or 1 e.g. C 2 N* = 1 for S 11 (1535) & D 13 (1520) C 2 N* = 0 for S 11 (1650) & D 13 (1700) SU(6)  O(3) symmetry is broken due to the configuration mixings caused by one- gluon exchange (Isgur, Karl & Koniuk, PRL 1978) Configuration mixings between two SU(6)  O(3) states with the total quark spin 1/2 or 3/2: S11: N( 2 P M ) 1/2 - N( 4 P M ) 1/2 - D13: N( 2 P M ) 3/2 - N( 4 P M ) 3/2 -

10 Configuration mixing │S 11 (1535)  = │N( 2 P M ) 1/2 -  cosθ S - │N( 4 P M ) 1/2 -  sinθ S │S 11 (1650)  = │N( 2 P M ) 1/2 -  sinθ S + │N( 4 P M ) 1/2 -  cosθ S  Transition amplitudes: A N*   N│H m (│N *   N * │H e │N  A S11   N│H m ( cosθ S │N( 2 P M ) 1/2 -  - sinθ S │N( 4 P M ) 1/2 -  ) (cos θ S  N( 2 P M ) 1/2 - │- sinθ S  N( 4 P M ) 1/2 - │) H e │N   N( 4 P M ) 1/2 - │ H e │ N  = 0, due to Moorhouse selection rule (PRL 1966) A S11  ( cos 2 θ S – R sinθ S cosθ S )  N│H m │N( 2 P M ) 1/2 -   N( 2 P M ) 1/2 - │ H e │N  R S = [  N│H m │N( 4 P M ) 1/2 -  ] / [  N│H m │N( 2 P M ) 1/2 -  ] SU(6)  O(3)  R S = -1 & R D = 1 / √10, for p → ηp C S11(1535) = cosθ S ( cosθ S – sinθ S ) C D13(1520) = cosθ D ( cosθ D – sinθ D / √10 ) C S11(1650) = - sinθ S ( cosθ S + sinθ S ) C D13(1700) = sinθ D ( cosθ D / √10 + sinθ D )

11 Ingredients s-channel: all known I=1/2 N*s & 6 “new” ones u-channel: nucleon Born term + N*s t-channel:  & ω exchanges Previous study (E γ lab ≤ 2 GeV) B. Saghai & Z. Li, EPJ A11 (2001); Limited to n ≤ 2 shell & no t-channel n = 1: 2 S 11, 2 D 13, 1 D 15 n = 2: 2 P 11, 2 P 13, 2 F 15, 1 F 17 Present work: besides t-channel embodies also: n = 3: S 11, D 13, D 15, G 17, G 19 n = 4: P 11, H 19 Degenerate n=5: I 1,11 n=6: K 1,13

12 All I=1/2 PDG N* + 6 new ones. PDG Star N* PDG Star N* PDG Star N* 4S 11 (1535)4D 13 (1520)4G 17 (2190) 4S 11 (1650)3D 13 (1700)4G 19 (2250) 1S 11 (2090)2D 13 (2080) NS 11 (1730)ND 13 (1850) 4P 11 (1440)4D 15 (1675)4H 19 (2220) 3P 11 (1710)2D 15 (2200)NH 1,11 (2200) 1P 11 (2100)ND 15 (1950) NP 11 (1810)3I 1,11 (2600) 4P 13 (1720)4F 15 (1680)2K 1,13 (2700) 2P 13 (1900)2F 15 (2000) NP 13 (2170)2F 17 (1990)

13 Full model  21 known N*s  6 new N*s  Fitted on 1822 data points  χ 2 = 1.81  Mixing angles: θ S ≈ - 35° ; θ D ≈ 15° (in good agreement with findings by Isgur, Karl, Chizma, Capstick…)

14 Differential cross-section

15 Polarization observables

16 Removing one resonance. PDG Star N* PDG Star N* PDG Star N* 4S 11 (1535)4D 13 (1520)4G 17 (2190) 4S 11 (1650)3D 13 (1700)4G 19 (2250) 1S 11 (2090)2D 13 (2080) NS 11 (1730)ND 13 (1850) 4P 11 (1440)4D 15 (1675)4H 19 (2220) 3P 11 (1710)2D 15 (2200)NH 1,11 (2200) 1P 11 (2100)ND 15 (1950) NP 11 (1810)3I 1,11 (2600) 4P 13 (1720)4F 15 (1680)2K 1,13 (2700) 2P 13 (1900)2F 15 (2000) NP 13 (2170)2F 17 (1990) χ 2 variation δχ 2 < 5%5% ≤ δχ 2 ≤ 15% Nb of N*s153

17 “Reduced” model  Remove ALL 18 N*s (δχ 2 ≤ 15%)  Then, re-fit the data with remaining 9 N*s χ 2 =1,81 → 2,12

18 Schematic presentation of the role played by the most relevant resonances in the process  p → η p Switched-off N*   d.o.f (Full Model:   =2.1) S 11 (1535)39.2 D 13 (1520)9.0 S 11 (2090)2.3 S 11 (1724)2.3 S 11 (1650)2.2 F 15 (1680)2.2 P 13 (1520)2.1 P 13 (1900)2.1 D 13 (1700)2.1

19 Polarization observables

20 Differential cross-section

21 Summary & Concluding remarks (I) Direct channel formalism for  p →ηp, within a chiral constituent quark approach. All data for d  /dΩ, Σ & T are well reproduced.  All 21 Known N*s and 6 new ones included in the model.  Rather few and severely constrained adjustable parameters.  Reaction mechanism dominated by 6N*. HOWEVER, Direct channel investigations: mandatory, but  No strong conclusions!

22 Summary & Concluding remarks (II) To go further, two directions:  Experimental: polarization asymmetries, especially with polarized target  Theoretical: coupled-channel approach (cf. talk by Harry Lee):  Already investigated by our collaboration (Argonne, Barcelona, Pittsburgh, Saclay)  p → [  N ;  N ; KY ] → K + Λ W.-T. Chiang, B. Saghai, F. Tabakin, T.-S.H. Lee, PRC 69, (2004). B. Juliá-Díaz, B. Saghai, T.-S.H. Lee, F. Tabakin, PRC 73, (2006).  In progress J. Durand, J. He, B. Juliá-Díaz, T.-S.H. Lee, T. Sato, B. Saghai, N. Suzuki  p → [  N ;  ;  N ;  N ; ηN] → ηp