Nanomagnetism: from atomic clusters to molecules and ions. First microwave experiments in the quantum regime. PhD students L. Thomas (Versailles, IBM),

Slides:



Advertisements
Similar presentations
Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Advertisements

Superconducting qubits
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Adiabatic Quantum Computation with Noisy Qubits Mohammad Amin D-Wave Systems Inc., Vancouver, Canada.
. Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)
Dynamics of the nuclear spin bath in molecular nanomagnets: a test for decoherence Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics.
Dynamics and thermodynamics of quantum spins at low temperature Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics & Astronomy TRIUMF.
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp Nicolas Laflorencie Moshe Schechter University.
 From a single molecule to an ensemble of molecules at T ~0 : Both tunneling rate and decoherence increase  LZ probability: P LZ = 1 – exp[-  (  /ħ)
Quantum phase transitions in anisotropic dipolar magnets In collaboration with: Philip Stamp, Nicolas laflorencie Moshe Schechter University of British.
Operating in Charge-Phase Regime, Ideal for Superconducting Qubits M. H. S. Amin D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM D-Wave Systems Inc.,
Initial goal: 70’s: Search for « macroscopic » quantum tunneling in magnetism Measurements on « narrow domain walls », ensemble of nanoparticles… Outline.
Generation of short pulses
PCE STAMP Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics QUANTUM GLASSES Talk given at 99 th Stat Mech meeting, Rutgers, 10.
Laterally confined Semiconductor Quantum dots Martin Ebner and Christoph Faigle.
QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS B. Barbara, W. Wernsdorfer, E. Bonet, L. Thomas (IBM), I. Chiorescu (FSU), R. Giraud (LPN) Laboratory Louis Néel,
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp, Nicolas Laflorencie Moshe Schechter University.
Silicon-based Quantum Computation Cheuk Chi Lo Kinyip Phoa Dept. of EECS, UC Berkeley C191 Final Project Presentation Nov 30, 2005.
Josephson Junctions, What are they?
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Nuclear Magnetic Resonance Spectrometry Chap 19. Absorption in CW Experiments Energy of precessing particle E = -μ z B o = -μ B o cos θ When an RF photon.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
Nuclear spin irreversible dynamics in crystals of magnetic molecules Alexander Burin Department of Chemistry, Tulane University.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Introduction to Single Molecular Magnet
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Quantum Devices (or, How to Build Your Own Quantum Computer)
Magnetic properties of a frustrated nickel cluster with a butterfly structure Introduction Crystal structure Magnetic susceptibility High field magnetization.
M. L. W. Thewalt, A. Yang, M. Steger, T. Sekiguchi, K. Saeedi, Dept. of Physics, Simon Fraser University, Burnaby BC, Canada V5A 1S6 T. D. Ladd, E. L.
2002 Agilent Technologies Europhysics Prize Lecture on Bernard Barbara, L. Néel Lab, Grenoble, France Jonathan R. Friedman, Amherst College, Amherst, MA,
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology.
Magnetization dynamics
Dynamics of the nuclear spin bath in molecular nanomagnets: a test for decoherence Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics.
Stephen Hill NHMFL and Florida State University, Physics Outline of talk: Idea behind the title of this talk Nice recent example: Radical Ferromagnet Mononuclear.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Magnetization Process of Molecular Magnet in ultra-fast sweeping magnetic fields 1. Introduction to High Field Lab. in Okayama 2. Ultra-fast sweeping magnetic.
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
B. Barbara, R. Giraud, I. Chiorescu*, W. Wernsdorfer, Lab. Louis Néel, CNRS, Grenoble. Collaborations with other groups: D. Mailly (Marcoussis) D. Gatteschi.
Microscopic origin of the adiabatic change of the magnetization Hans De Raedt Applied Physics-Computational Physics, Materials Science Centre, University.
Single Molecular Magnets
Large scale quantum computing in silicon with imprecise qubit couplings ArXiv : (2015)
Measuring Quantum Coherence in the Cooper-Pair Box
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
Derek F. Jackson Kimball. Collaboration Dmitry Budker, Arne Wickenbrock, John Blanchard, Samer Afach, Nathan Leefer, Lykourgas Bougas, Dionysis Antypas.
NMR Studies of nanoscale molecular magnets Y. Furukawa Y. Fujiyoshi S. Kawakami K. Kumagai F. Borsa P. Kogerler Hokkaido University (Japan) Pavia University.
Dynamics of novel molecular magnets V-ring and rare earth compounds Okayama Univ. H. Nojiri Introduction Magnetization step in V-rectangular ring Short.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Small fermionic systems : the common methods and challenges
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Superconducting Qubits
Ferromagnetism and antiferromagnetism ferromagnetism (FM)
On the collapses and revivals in the Rabi Hamiltonian
Coupled atom-cavity system
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Magnetization processes in V15
Stephen Hill, Rachel Edwards Nuria Aliaga-Alcalde and George Christou
Quantum tunneling by Hyperfine interaction Origin of adiabatic change of the magnetization and the symmetry of the molecules Seiji Miyashita, Hans de.
NV centers in diamond: from quantum coherence to nanoscale MRI
Chapter 5 - Phonons II: Quantum Mechanics of Lattice Vibrations
Hiroyuki Nojiri, Department of Physics, Okayama University
Norm Moulton LPS 15 October, 1999
Presentation transcript:

Nanomagnetism: from atomic clusters to molecules and ions. First microwave experiments in the quantum regime. PhD students L. Thomas (Versailles, IBM), I. Chiorescu (MSU), C. Thirion (Durham), R. Giraud (Würzburg), R. Tiron (LLN) Collaborations with other groups D. Mailly (Marcoussis) A.M. Tkachuk (S t Petersburg) H. Suzuki (NIMS, Tsukuba, Japan) D. Gatteschi (Florence) A. Müller (Bielefeld) B. Barbara, E. Bonet, W. Wernsdorfer, Nanomagnetism group, Louis Néel Lab., CNRS, Grenoble.

The case of rare-earths ions A new direction Tunneling of the angular momentum J of Ho 3+ ions in Y Ho LiF 4 Example of a metallic matrix: Ho 3+ ions in Y Ho Ru 2 Si 2 OUTLINE Some classical and quantum aspects of nanomagnetism in magnetic nanoparticles and molecules (Brief introduction to the field) Conclusions and perspectives Effects of microwave absorption : towards spin qubits

Micro-SQUID magnetometry  ≈ 10 2 µB µB ≈ emu M - M H ~ H sw  M Large dB/dt fabricated by electron beam lithography (D. Mailly, LPM, Paris) sensitivity : I I c Superc. Normal W. Wernsdorfer, K. Hasselbach, D. Mailly, B. Barbara, A. Benoit, L. Thomas, JMMM, 145, 33 (1995).

Nanometer scale NanoparticleCluster 20 nm3 nm1 nm2 nm Magnetic ProteinSingle Molecule 50S =

Micro-SQUID array crystal size > few µm to emu temperature K field < 1.4 T and < 20 T/s rotation of field transverse field several SQUIDs at different positions irradiation with microwaves 0.1 to 345 GHz

Evidence of the 2-D Stoner-Wohlfarth astroid 5 nm FeS, filled nanotuble N. Demoncy, H. Pascard, A. Loiseau W. Wernsforfer, E. Bonnet, B. Barbara, N. Demoncy, H. Pascard, A. Loiseau, JAP, 81, 5543 (1997).

Effect of a transverse field close to the anisotropy field: Telegraph noise 10 6 spins - W. Wernsdorfer, E. Bonet, K. Hasselbach, A. Benoit, B. Barbara, N. Demoncy, A. Loiseau, H. Pascard, D. Mailly, Phys. R.ev. Lett., 78, 1791 (1997) - B. Barbara et al, Proc. Mat. Res. Symp. 475, 265 (1997); Lecture Notes in Physics (2001) Single phonons shots Reversal up, down, up…

Mn(IV) S=3/2 Mn(III) S=2 Total Spin =10 Mn12acetate

Barrier in zero field (symmetrical) H= - DS z 2 - BS z 4 - E(S S - 2 ) - C(S S - 4 ) Thermally activated tunneling If applied field // -M non-symmetrical barrier New resonances at g  B H n = nD Landau-Zener Transition at avoided level crossing (isolated system) Tunneling probability: P=1 – exp[-  (  /ħ) 2 /  c] c = dH/dt 

Tunneling of Magnetization in Mn 12 -ac ICM’94 Barbara et al JMMM (1995); NATO ASI QTM’94 ed. Gunther and Barbara; Thomas et al Nature (1996); Friedman et al, PRL (1996); Wernsdorfer and Sessoli Science (1999); Tupitsyn and Barbara « Magneto Science, Wiley, NY (review, 2001)… see cond/mat…. …. Slow quantum spin dynamics of molecule magnets…. Resonant tunneling at Hn =450.n mT (Steps)

A new direction: Tunneling of the angular momentum of rare-earths ions A quasi- infinite number of systems for the study of mesoscopic quantum dynamics: - different CF and 4f symmetries - different concentrations - insulating, metallic, semi-conducting … Ho 3+ in Y Ho LiF 4 Tetragonal symmetry (Ho in S4); (J = L+S = 8; g J =5/4) Dipolar interactions ~ mT << levels separation

R. Giraud, W. Wernsdorfer, D. Mailly, A. Tkachuk, and B. Barbara, PRL, 87, (2001) B20 = K, B40 = mK, B44 = mK, B60 =-8.41mK, B64 = mK Sh. Gifeisman et al, Opt. Spect. (USSR) 44, 68 (1978); N.I. Agladze et al, PRL, 66, 477 (1991) Barrier short-cuts Energy barrier ( ~ 10 K) Strong mixing Singlet excited state + Doublet ground-state + Large  1 (Orbach process) CF levels and energy barrier of Ho 3+ in Y Ho LiF 4

Hysteresis loop of Ho 3+ ions in YLiF 4 Comparison with Mn12-ac dH/dt=0.55 mT/s Many steps ! L.Thomas, F. Lionti, R. Ballou, R. Sessoli, R. Giraud, W. Wernsdorfer, D. Mailly, A.Tkachuk, D. Gatteschi,and B. Barbara, Nature, and B. Barbara, PRL, 2001 Steps at B n = 450.n (mT) Steps at B n = 23.n (mT) Tunneling of Mn 12 -ac Molecules Tunneling of Ho 3+ ion … Nuclear spins…

Ising CF Ground-state + Hyperfine Interactions H = H CF-Z + A{J z I z + (J + I - + J - I + )/2} -7/2 7/2 5/2 3/2 -7/2 Co-Tunneling of electronic and nuclear momenta: Electro-nuclear entanglement The ground-state doublet 2(2 x 7/2 + 1) = 16 states -5/2 5/2 g J  B H n = n.A/2 A = 38.6 mK Avoided Level Crossings between |  , I z  and |  +, I z ’  if  I= (I z -I z ’ )/2= odd

dB/dt ~ 1 mT/s Acceleration of quantum dynamics in a transverse field …. slow sweeping field:  meas >>  bott >  1 Near thermodynamical equilibrium at the cryostat temperature…

50 mK 0.3 T/s Giraud et al, PRL 87, (2001) Additional steps at fields: H n = (23/2).n (mT) single Ho 3+ tunneling being at avoided level crossings at H n = 23.n (mT) 50 mK 0.3 T/s Simultaneous tunneling of Ho 3+ pairs (4-bodies entanglement) Two Ho 3+ Hamiltonian avoided level crossings at H n = (23/2).n

R. Giraud, A. Tkachuk, and B. Barbara, PRL (2003). Single-ion level structure E n =  E  g  B H n Tunneling: g  B H n = (n’-n)  E/2 Co-tunneling: g  B H n =(n’-n+1/2)  E/2  E = A) Two-ions Level structure Co-tunneling Biais tunneling Diffusive tunneling

Model of two coupled effective spins H/J =  ij S i z S j z +  ij (S i + S j - + S j + S i - )/2 +  ij (S i + S j + + S j - S i - ) + (A/J)  i [ I i z S i z +1/2(I i + S i - + I i - S i + ) ] with  = (J x + J y )/2J  = (J x - J y )/4J This is why dipolar interactions induce multi-tunneling effects B. Barbara et al, ICM’03, JMMM to appear Co-tunnelingDiffusive tunneling This term becomes negligible at T>>2K

n=1 n=2 Case of a metallic matrix: Ho 3+ ions in Y Ho Ru 2 Si 2 n=0 These steps come from tunneling transitions of J+I of single Ho 3+ ions, In a sea of free electrons.

Spin tunneling assisted by photons: Irradiation of a single crystal of Fe8 by circularly polarized electromagnetic radiations  M=±1 Effects of photons and of phonons can be differenciated

Absorption of circular polarized microwaves (115 GHz)

Absorption of circularly polarized microwaves (115 GHz)

Absorption of circularly polarized microwaves (95 GHz)

Photon induced tunnel probability P assisted = P - n ±10 P ±10 TsTs  n=0 n=1

Photon induced line-width broadening L. Sorace, W. Wernsdorfer, C. Thirion, A-L. Barra, M. Pacchioni, D. Mailly, and B. Barbara, Phys. Rev. B 68, (2003) Multi—tunneling transitions: R. Giraud, W. Wernsdorfer, D. Mailly, A.Tkachuk, and B. Barbara, PRL, 2001

V 15 : a spin 1/2 molecule with adiabatic LZ transition. Absorption of sub-centimetric waves  Max ~ 5 s -1 I. Chiorescu, W. Wernsdorfer, A. Müller, H. Boggë, and B. Barbara et al, PRL (2000) W. Wernsdorfer, D.Mailly, A. Müller, and B. Barbara, EPL, to appear.

Frequency dependence of microwaves absorption in V 15

Resonant absorption at  =  B g ~ 0. 97

Resonant absorption + ~ Field-independent absorption  M / Ms

Gaussian absorption lines Important broadening by nuclear spins Loss of coherence  R ~  b ~ 30 kHz    2 ~  ~ 0.2 GHz Rabi oscillations, require larger b. N = B Max /2  =  B  2 /  ~20 Precession ~ 20 turns

Relatively narrow Resonant absorption ~ 7 mT (15 times smaller) Still ~ 20 precession turns, and Another example: substituted magnetic wheels Fe 5 Ga  R ~  b ~ 30 kHz << 1/  2 ~  ~ 10 MHz A. Cornia, Modena

Multi-photon absorption Cr 7 Ni S = 1/2 G. A. Timco and R. E. P. Winpenny

Leuenberger & Loss, NATURE, 410, 791 (2001) implementation of Grover's algorithm storage unit of a dynamic random access memory device. fast electron spin resonance pulses can be used to decode and read out stored numbers of up to 10 5 with access times as short as 0.1 nanoseconds. Quantum computing in molecular magnets …Several ways…

CONCLUSION Ho 3+ in LiYF4 Evidence for tunneling of the total angular momentum J Quasi-isolated Ho 3+ ions (J and I tunnel simultaneously : co-tunneling) Pairs of Ho 3+ ions (four-body entanglement) Relevant quantum number (Kramers,..) : I+J at T < 2K Crucial role of the anisotropic character of dipolar interactions Metals: spin tunneling in the presence free carriers Molecular magnets Hidden multi-tunneling effects Tunneling assisted by photons: Highly non-linear effects (Fe 8 ) Evaluation of coherent precessional time in molecular magnets Most important requirement to observe Rabi oscillations: Radiation Field x 10 4 because spins are small !! Absorption width : 10 2 because of the spin-bath (Stamp, Prokfiev and Tupitsyn, )

Some perspectives Dissipation and decoherence by free carriers on spin tunneling in metals (Kondo, heavy fermions, spintronics) Higher order many-body tunneling and decoherence by the environment (quantum phase transitions) Rabi oscillations and spin-echo experiment on electronic states of - Molecular magnets (intra-molecules hyperfine interactions ~10 mK) - Entangled E-N pairs of Ho 3+ (dipolar interactions, hyperfine interactions ~1 mK) Spin Qubits manipulated by photons in new molecular and systems.