DataFed and FASTNET Tools for Agile Air Quality Analysis Husar & Poirot.

Slides:



Advertisements
Similar presentations
Air Quality and Health Scenario Stefan Falke, Rudy Husar, Frank Lindsay, David McCabe.
Advertisements

WELCOME TO THE USER INTERFACE COMMITTEE MEETING 15 November 2009 Gary J. Foley, PhD Earth Observation Systems Executive Senior Advisor to the EPA Chief.
Web Services Implementation Case Study: DataFed Air Quality Data & Services Project Coordinators: Software Architecture: R. Husar Software Implementation:
Microsoft ® System Center Configuration Manager 2007 R3 and Forefront ® Endpoint Protection Infrastructure Planning and Design Published: October 2008.
REASoN REASoN Project to link NASA's data, modeling and systems to users in research, education and applications Application of NASA ESE Data and Tools.
FASTNET Report: 0409RegHazeEvents04 Eastern US Regional Haze Events: Automated Detection and Documentation for 2004 Contributed by the FASNET Community,
OGC Demo at IGARSS06 July 30 - Denver, CO Telecon 11 July 2006 Liping Di, George Mason University Rudolf Husar, Washington University.
Federated PM and Haze Data Warehouse Project a sub- project of (enter your sticker & logo here ) Nov 20, 2001, RBH St. Louis Midwest Supersite Project.
Web-Based Decision Support Systems: Supporting Air Quality Monitoring Networks, Science, and Regulations Bret A. Schichtel, National Park Service Rudolf.
ESIP Vision: “Achieve a sustainable world” by Serving as facilitator and advisor for the Earth science information community Promoting efficient flow of.
ESIP Air Quality Workgroup and the GEO Air Quality Community of Practice collaboratively building an air quality community network for finding, accessing,
1 The FASTNET Project Presented by: Sean Raffuse 1 Rudy Husar 2 Rich Poirot and Gary Kleiman 3 1 Sonoma Technology, Inc. 2 Center for Air Pollution Impact.
Stefan Falke Center for Air Pollution Impact and Trend Analysis Washington University in St. Louis Networked Data and Tools for Environmental Management.
Distributed Data Analysis & Dissemination System (D-DADS) Prepared by Stefan Falke Rudolf Husar Bret Schichtel June 2000.
CAPITA Projects NSF ToolsCollaboration Tools for Virtual Workgroups EPA WebVis Internet Visibility System NOAAASOS Data Evaluation EPAICAP Intercontinental.
Distributed Voyager (DVoy) Web Services
DRAFT June 6, 2005 ESIP AQ Cluster, Air Quality Cluster Air Quality Cluster TechTrack Earth Science Information Partners Partners NASA.
AQ Management: Sensory-Motor System Air Quality Assessment Compare to Goals Plan Reductions Track Progress Controls (Actions) Monitoring (Sensing) Set.
Air Quality Focus Group Discussion Summary ESIP Winter Meeting January 2005 Air Quality is one of 12 Applications of National Priority as defined by NASA.
Earth Science Environmental Decision-Making Pai-Yei Whung, PhD Chief Scientist U.S. Environmental Protection Agency January 5, ESIP Federation.
ESIP Federation Air Quality Cluster Partner Agencies.
ESIP Federation Air Quality Cluster Partner Agencies.
1 The FASTNET Project Presented by: Sean Raffuse 1 Rudy Husar 2 Rich Poirot and Gary Kleiman 3 1 Sonoma Technology, Inc. 2 Center for Air Pollution Impact.
REASoN REASoN Project to link NASA's data, modeling and systems to users in research, education and applications Application of NASA ESE Data and Tools.
Project Outline: Technical Support to EPA and RPOs Estimation of Natural Visibility Conditions over the US Project Period: June May 2008 Reports:
An Integrated Systems Solution to Air Quality Data and Decision Support on the Web GEO Architecture Implementation Pilot – Phase 2 (AIP-2) Kickoff Workshop.
Spatio-Temporal Data Sharing using XML Web Services Presented at the Workgroup Meeting on Web-based Environmental Information System for Global Emission.
Current Air Quality Information ‘Ecosystem’ (Draft for Feedback) AQ information includes emissions, ambient & satellite data and model outputs The distributed.
Stefan Falke Center for Air Pollution Impact and Trend Analysis Washington University in St. Louis Brooke Hemming US EPA – Office of Research and Development.
Application of ESE Data and Tools to Particulate Air Quality Management The CAPITA REASoN Project August 15, 2003 Stefan Falke and Rudolf Husar Center.
Air Quality Cluster Air Quality Cluster TechTrack Earth Science Information Partners Partners(?) NASA NOAA EPA USGS DOE NSF Industry… Data Flow Technologies.
Accessing and Using Fire-Related Data with the CAPITA DataFed.net* Services Framework Stefan Falke Rudolf Husar Kari Hoijarvi Washington University in.
NASA Air Quality Applications Program and the ESIP Air Quality Cluster The goal of the NASA Air Quality Management program is to: Enable partners’ beneficial.
1 Exceptional Events Rulemaking Proposal General Overview March 1, 2006 US EPA.
ESIP Vision: “Achieve a sustainable world” by Serving as facilitator and advisor for the Earth science information community Promoting efficient flow of.
Smoke Event Public EPA NAAQS Exc. Events States: AQ Warning NOAA Travel Advisories AQ Forecasting FAA Flight Advisories NASA Earth Obs: Public.
UNCLASS1 Dr. Gene Whitney Assistant Director for Environment Office of Science and Technology Policy Executive Office of the President WISP Meeting - July.
COMMUNITY. Data Acquisition and Usage Value Chain.
Distributed Data Analysis & Dissemination System (D-DADS ) Special Interest Group on Data Integration June 2000.
Dvoy Related Ideas. Data Acquisition and Usage Value Chain.
Air and Waste Management Association Professional Development Course AIR-257: Satellite Detection of Aerosols Issues and Opportunities Fraction.
Fire Emissions Network Sept. 4, 2002 A white paper for the development of a NSF Digital Government Program proposal Stefan Falke Washington University.
NASA REASoN Project SHAirED: S ervices for H elping the Air -quality Community use E SE D ata Stefan Falke, Kari Höijärvi and Rudolf Husar, Washington.
NASA REASoN Project SHAirED: S ervices for H elping the Air -quality Community use E SE D ata Stefan Falke, Kari Höijärvi and Rudolf Husar, Washington.
Air Quality Data User Agencies Draft ESIP Federation Air Quality Cluster February, 2005.
Processes of the Information Value Chain Informing Knowledge ActionProductive Knowledge Information Organizing Grouping Classifying Formatting Geo-referencing.
Architecture and Technologies for an Agile, User-Oriented Air Quality Data System Rudolf B. Husar Washington University, St. Louis Presented at the workshop.
Architecture and Technologies for an Agile, User-Oriented Air Quality Data System Rudolf B. Husar Washington University, St. Louis Presented at the workshop.
Why PM Data Analysis by States? These are fragments that may be used somewhere in the Introduction section of the Workbook. PM Data Analysis Workbook:
Web Services-Based Mediator of Distributed Data Flow and Processing Project Coordinators: Software Architecture: R. Husar Software Implementation: K. Höijärvi.
CAPITA Center for Air Pollution Impact and Trend Analysis.
The Central American Smoke Event of May 1998 A Draft Summary Based on Reports and Data on the Web Rudolf B. Husar and Bret Schichtel CAPITA, Dec 1998.
ESIP Air Quality Jan Air Quality Cluster Air Quality Cluster Technology Track Earth Science Information Partners Partners NASA NOAA EPA (?) USGS.
: Data Sharing/Processing Infrastructure Data Catalog and Access Dozens of datasets on aerosols, emissions, fire, meteorology,
1 SEEDS IT Vision Scenario: Smoke Impact REASoN Project: Application of NASA ESE Data and Tools to Particulate Air Quality Management (PPT/PDF)Application.
Concepts on Aerosol Characterization R.B. Husar Washington University in St. Louis Presented at EPA – OAQPS Seminar Research Triangle Park, NC, April 4,
DRAFT June 6, 2005 ESIP AQ Cluster, Contact R. Husar Air Quality Cluster Air Quality Cluster TechTrack Earth Science Information Partners.
Application of NASA ESE Data and Tools to Particulate Air Quality Management A proposal to NASA Earth Science REASoN Solicitation CAN-02-OES-01 REASoN:
The Federated Data System DataFed R. Husar, K. Hoijarvi, S. Falke, DaFed Community EPA Data Summit, Feb. 12, 2008, RTP Non-intrusive data integration infrastructure.
Topic Suggestions Scheffe GEOSS Support to Regional Air Quality (see next slide) –Data. Services –Sharing/Harvesting Infrastructure –Intellectual Resources.
Concepts on Aerosol Characterization R.B. Husar Washington University in St. Louis Presented at EPA – OAQPS Seminar Research Triangle Park, NC, April 4,
Key Findings from May & July 2008 WRAP Technical Workshops September 30, 2008 Steve Arnold, Colorado DPHE & Bob Kotchenruther, EPA R10 (Co-Chairs, WRAP.
Federal Land Manager Environmental Database (FED) Overview and Update June 6, 2011 Shawn McClure.
Fire, Smoke & Air Quality: Tools for Data Exploration & Analysis : Data Sharing/Processing Infrastructure This project integrates.
There is increasing evidence that intercontinental transport of air pollutants is substantial Currently, chemical transport models are the main tools for.
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ESDS Reuse Working Group Earth Science Data Systems Reuse Working Group Case Study: SHAirED Services for.
Agencies Active in Air Quality and Management and Science Draft ESIP Federation Air Quality Cluster February, 2005.
ESIP Vision: “Achieve a sustainable world” by Serving as facilitator and advisor for the Earth science information community Promoting efficient flow of.
Current and Future State of the IMPROVE Website
4/5 May 2009 The Palazzo dei Congressi di Stresa Stresa, Italy
Presentation transcript:

DataFed and FASTNET Tools for Agile Air Quality Analysis Husar & Poirot

FASTNET Applications Actual: Working tools for RPOs for characterizing haze events, particularly from natural sources Test bed for new Web-Services data integration and analysis technologies (NSF, NASA) Case Study of ESIP for enabling AQ analysts for multiple agencies with modern IT Potential: Model – Data Integration – Retrospective and real time Quantification of satellite data for AQ application Regulatory support for PM25 compliance – weight of evidence approach

Intro - Management Environmental management is a closed-loop process that includes sensing the environment, detecting possible hazards, identifying the causes, evaluating the mitigation options and acting to reduce the hazard. The approach to the environmental management has been has been changing recently in several important ways.  The command and control management style is giving way to broader participatory approach involving the key stakeholders throughout the management process.  The environmental decision makers have become interested in monitoring and evaluating the effectiveness of past environmental control actions.  The conectedness of air, water and land pollution is recognized by multimedia approach to the issue of permits. In the recent past, the mitigation of environmental problems has been accomplished primarily by laws and regulations that were prepared and enforced by governmental agencies. Other stakeholders, such as industry and public interest groups have participated in the management process indirectly by influencing the relevant governmental agencies. Conflict resolution among the stakeholders occurred primarily through the political mechanisms in the Congress where the laws created and through litigation with the regulatory agency, EPA. Once, the laws and regulations were in place, they constituted a command that had to be executed by those who performed the environmental control action. Thus the term command and control approach. Meagatrends NAAMS, Haze rule Major transformations in the nature of air pollution and its management have occurred over recent decades that effected the nature of AQ management. Health and environmental health studies implicate ozone and fine particulates as two of the most serious current air quality problems in North America. Both are secondary pollutants formed in the atmosphere from precursor gases. Hence, there is no direct way of linking their sources to their effects. The atmospheric lifetime of O3 and PM2.5 is several days so the winds carry them over 1,000 km before removal. The result is “long-range transport” (LRT) across state and international boundaries, i.e. in/out of the jurisdiction of AQ agencies. Finally, the old command and control air quality management style is giving way to a more participatory approach by including stakeholders, encouraging market-based resource allocation and applying ‘weight of evidence’ criteria (scientific arguments) to compliance management. These developments have significant implications on the information systems that support air quality management decisions. The information system must deliver relevant information to a broad range of stakeholders (federal, state, local, industry, international). The range of data needed for analysis and interpretation now is much richer including high resolution satellite data on PM concentrations, emissions, meteorology, and effects. Furthermore, the type of data, the level of aggregation, filtering, and the frequency at which sensory data are provided to the air quality management system differs greatly whether it is applied to policy, regulatory or operational decisions. Fortunately, outstanding opportunities exist now to fulfill most of these information requirements for PM management. Currently, abundant high-grade routine monitoring data are available from both surface as well as satellite platforms. New information technologies are now capable, in principle, to deliver the right information to the right place and time for decision-making. Last but not least, the stakeholders are increasingly committed to the cooperative spirit and recognize the needs and the benefits of resource sharing through collaboration. This project is a contribution to realize the opportunities in improved air quality management through a more effective use of existing monitoring data. The specific application area chosen for the proposed work is particulate air quality management. We will work with the US EPA, States, and NASA to simplify and integrate the use of ESE data in air quality management decisions making and enhance the availability and interoperability of ESE data with other air quality relevant data.

Natural Aerosols Why natural aerosols Messy but it characterized – self describing Info system to bring it together

Current Data Connectivity Currently, most of the data used in the PM management process are housed in the central AIRS database, populated by mandated data submissions by the states. AIRS has provisions for ‘pre-packaged’ reports, mostly reporting summaries pertinent to regulatory process, but it does not have facilities to perform detailed specialized analysis of the raw data. For this reason, past projects at the Center for Air Pollution Impact and Trend Analysis (CAPITA) at Washington University with the EPA provided access to the raw AIRS data, converted data into a uniform “Voyager” format, and distribute to states and other agencies. Similar data access and delivery systems were built by CAPITA for individual states, including California. AirNOW is the EPA’s database for collecting near real time air quality monitoring data from the states. It is currently centralized and focused on ozone and particulate matter (PM) but contains limited contextual information because it is not linked to other systems such as satellite data, weather or model forecasts. The addition of satellite imagery could provide valuable context for the interpretation of the surface air quality data in AirNOW. In 1999, the U.S. Environmental Protection Agency announced a major initiative to improve visibility in national parks and wilderness areas by reducing regional haze. In support of the resulting Regional Haze Rule, the EPA and five Regional Planning Organizations (RPOs) have established the Visibility Information Exchange Web System (VIEWS, 2002) to facilitate the exchange of data. VIEWS is an important resource for inclusion in a federated PM network. It should be noted that the PM air quality management process does not use dedicated, ‘hard-wired’ Decision Support Systems (DSS). The management decisions are built mostly on human decision hierarchy. Human decisions makers rely on expert judgment and on the richness and diversity of environmental data. The required data for an AQ decision support system come from many disparate sources, e.g. point and area source data, air quality monitoring by many sensor types, weather data, as well as data on effects, e.g. visibility degradation. The existing centralized federal data management system may be appropriate for enforcement. However, for SIP’s and other analyses it is too rigid, and insufficient in content. Hence, the development and implementation of an agile federated information system is an attractive architecture for AQ decision support.

1.3.2 Anticipated End State of Application At the anticipated end state of this project is that, 1) satellite data will be routinely incorporated into the PM management process, 2) an agile infrastructure will be in place for PM data sharing, processing; and 3) PM management decision making will be more effective. The added satellite data from NASA and NOAA sensors will provide new and broader of PM problem. A Federated PM Network will allow the creation of value chains, where the goal of each participant is to add the maximum value to the overall information product. The main participants in the information value adding chain include data providers who supply the primary data to the decision system through their data servers and data transformers who add value to the primary data by processing (e.g. filtering, aggregation, fusion) or through display and browsing services. Transformers produce secondary data for others to use. Data integrators provide “one stop access” to the primary and secondary data as well as for transformation and rendering services. Finally, the end users (analysts, managers, and planners) choose the appropriate data sets, perform the appropriate transformation and rendering, and produce the relevant knowledge for the decision-making process. This is the concept behind SEEDS. The application and the use of REASoN and SEEDS concepts to AQ management is desirable and feasible within the scope of the proposed project. Data in the federated system can be easily found through a well maintained catalog system whose data can be easily accessed from their custodians through appropriate wrapper services. Value adding processing is achieved through chainable software components, and finally, the results of the data accessing and processing can be delivered to the right place at the right time in the decision system. The federated information system (FIS) through its facilities for finding, accessing, manipulating and delivering data can result in considerable savings in time and money. Hence, the FIS allows these resources to be spent on more effective tasks, such as data analysis, interpretation, and quality control. More importantly, the variety and convenience of data accessible through federated system will allow decision support that is qualitatively different. In short, the main benefits of the federated information system lie in access and recycling of data and the resulting savings in time and money. The proposed data connectivity system will be built for extensibility for different applications and for scalability in size and the variety of data sets. As the pool of available data and tools continues to expand, the network’s adaptive and extensible design would allow the community to add their own information resources. The tools within the network will create value added knowledge by facilitating the filtering, fusion, and aggregation of existing resources and in providing second order interoperable applications created by chaining services. The end state will also include three specific software applications built on top of the federated information infrastructure: 1) An Aerosol Watch System; 2) Multidimensional distributed data browser, Voyager; and 3) A software module connection manager, ConMan. These applications will be the primary vehicles for passing the PM data through the value adding chain and delivering the high-grade knowledge to the decision makers. The Aerosol Watch System has three components: the Virtual PM Monitoring Dashboard, Virtual Workgroup Website, and Air Quality Managers Console. The details of the Aerosol Watch System are described in section 2.1. The concept of the Aerosol Watch System Consoles is further illustrated here using a July 2002 Quebec smoke event. The regional aerosol concentration during the passage of the Quebec smoke was the highest ever recorded, (well above the air quality standards) in many areas of New York and New England. Yet, there was no warning for the potential health hazard from any of the state air pollution agencies. Below is a brief anatomy of the event as it happened and as it might happen with an operational Aerosol Watch System. More on the Quebec Smoke Event can be found on the Aerosol Events Virtual Community ( On the afternoon of July 5, 2002 the smoke emissions of the seasonal forest fires in northern Quebec had increased dramatically and the wind carried the thick smoke cloud southward. The yellowish smoke front reached NY/New England on July 6, hampering road and airline traffic due to visibilities well below one mile, and caused record high PM2.5 concentrations. The drifting smoke cloud was noted by a number of observers who routinely examine the daily satellite data, including Husar at CAPITA. While the strong visibility degradation was evident, the air pollution agencies in the Northeast were not aware of the magnitude of the smoke concentrations and extent. Hence, no advisories were issued. It was not until extensive correspondence and news reports on CNN that the agencies began assessing the features of this smoke event. Within several days following the event, the data from numerous real time monitoring systems were collected by several groups and displayed on the CAPITA Aerosol Events Website. Figure 2 shows the data from the MODIS sensor including the red fire location pixels as well as the spatial pattern of the smoke plume. Figure 2 also shows the 1:00PM SeaWiFS and TOMS data along with the surface extinction coefficient values collected by the automated ASOS surface meteorological network. A third image shows the time series of PM2.5 mass concentration measured at numerous continuous PM monitors. Animations of the smoke transport (not show here) were generated from 30 minute, 1km visible GOES 8 images. The raw data for all the monitoring data shown in the summaries were available through the internet in almost real time. However, the time and effort to collect, assemble, and superimpose these datasets required several days of effort; considerably diminishing the value of that information to AQ managers. Figure 2. Real time PM data available from satellite and surface based sensors. Left image shows the MODIS reflectance and fire location pixels. On the right, the TOMS satellite and surface visibility data are superimposed on SeaWiFS reflectance image. A possible scenario for the handling of such events in the future may consist of the following. Data from all of the relevant satellite and real time aerosol sensors are collected and displayed through the aerosol monitoring dashboard accessible by anyone as a web page. At any given time, a designated set of human observers are assigned the task of watching for “interesting” events. When such a event occurs, a notification message is transmitted to air quality managers and interested subscribers. Following the notification, the community of interested observers begins to assemble a “storybook” summary of the event and shares the summary with the air quality management group. Given such technical guidance, the PM manager decides on the appropriate action.

DataFed DataFed Vision Aid air quality management and science by effective use of relevant data DataFed Goals Facilitate the access and flow of atmospheric data from provider to users Support the development of user-driven data processing value chains P articipate in specific application projects Approach: Mediation Between Users and Data Providers DataFed assumes spontaneous, autonomously data providers data Non-intrusively wraps datasets for access by web services Mediator software provides homogeneous data views. e.g. geo-spatial, time... Applications Building browsers and analysis tools for distributed monitoring data Serve as data gateway for user programs; web pages, GIS, science tools DataFed is currently focused on the mediation of air quality data Repositories - Data storage and access. Catalogs and Brokers - Elements that find and access resources on a distributed network. Operator and Models - Processes that operate on information, also methods to describe these processes. Applications – Shared components such as viewers, editors, discovery clients and others.