The inter-comparison of SCIAMACHY and radar cloud top heights Alexander A. Kokhanovsky(1), C. Naud(2), A. Devasthale(3) (1)Institute of Remote Sensing,

Slides:



Advertisements
Similar presentations
Modelling radar and lidar multiple scattering Modelling radar and lidar multiple scattering Robin Hogan The CloudSat radar and the Calipso lidar were launched.
Advertisements

Integrated Profiling at the AMF
The retrieval of snow properties from space: theory and applications A. A. Kokhanovsky 1, M. Tedesco 2,3, G. Heygster 1, M. Schreier 1, E. P. Zege 4 1)University.
SCILOV-10 Validation of SCIAMACHY nadir operational NO 2 product F. Azam, A. Richter, M. Weber, H. Bovensmann and J. P. Burrows ESA/ESRIN, Frascati, Italy.
Application of Cloudnet data in the validation of SCIAMACHY cloud height products Ping Wang Piet Stammes KNMI, De Bilt, The Netherlands CESAR Science day,
SCIAMACHY data archive Bremen Level 2 - reading tools Institute of Environmental Physics and Institute of Remote Sensing University of Bremen K. Bramstedt.
Envisat Symposium, April 23 – 27, 2007, Montreux bremen.de SADDU Meeting, June 2008, IUP-Bremen Cloud sensitivity studies.
Sea Ice Thickness from Satellite, Aircraft, and Model Data Xuanji Wang 1 and Jeffrey R. Key 1 Cooperative.
Atmospheric structure from lidar and radar Jens Bösenberg 1.Motivation 2.Layer structure 3.Water vapour profiling 4.Turbulence structure 5.Cloud profiling.
Determination of optical and microphysical Properties of Water Clouds.
Quantitative evaluation of regional precipitation forecasts for Belgium using multi-dimensional remote sensing observations (QUEST-B) Nicole van Lipzig.
Ground-based validation of SCIAMACHY OL 3.0 Ozone Profile Data and Estimation of Altitude Shift.
Institute for Environmental Physics and Remote Sensing (IUP/ife) Physics/Electrical Engineering 1 K.-U. Eichmann, C. von Savigny, G. Rohen, J. Kaiser,
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Lidar overlap control as a mean for extended measurement reliability Ilya Serikov, Holger Linné, Friedhelm Jansen, Björn Brügmann, Monika Pfeiffer, Jens.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Page 1 Sciamachy Validation Workshop – Bremen December 2004 Contribution to the validation of SCIAMACHY scientific data products for CO, CH 4, CO.
Evaluation of the VIIRS Cloud Base Height (CBH) EDR Using CloudSat
July 14, 2004Alexander Marshak 3D Error Assessment and Cloud Climatology from MODIS R.F. Cahalan, A. Marshak (GSFC) K.F. Evans (University of Colorado)
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Page 1 Validation by Model Assimilation and/or Satellite Intercomparison - ESRIN 9–13 December 2002 Validation of ENVISAT trace gas data products by comparison.
Atmospheric Science Conference, Frascati, Italy, May, 2006 Retrieval of BrO vertical distributions from SCIAMACHY limb measurements: Data quality.
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Measurements.
1 GOES-R AWG Product Validation Tool Development Aviation Application Team – Volcanic Ash Mike Pavolonis (STAR)
1 GOES-R AWG Product Validation Tool Development Aviation Application Team – Volcanic Ash Mike Pavolonis (STAR)
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET-AQ Applied Remote SEnsing Training A project of NASA Applied Sciences Pawan Gupta Originally.
SCIAMACHY long-term validation M. Weber, S. Mieruch, A. Rozanov, C. von Savigny, W. Chehade, R. Bauer, and H. Bovensmann Institut für Umweltphysik, Universität.
WP 8: Impact on Satellite Retrievals University of l’Aquila (DFUA [12]): Vincenzo Rizi Ecole Polytechnique (EPFL [13]): Bertrand Calpini Observatory of.
Joint International GRACE Science Team Meeting and DFG SPP 1257 Symposium, Oct. 2007, GFZ Potsdam Folie 1 Retrieval of electron density profiles.
1 Optimal Channel Selection. 2 Redundancy “Information Content” vs. “On the diagnosis of the strength of the measurements in an observing system through.
OSTST - March Hobart 1 Impacts of atmospheric attenuations on AltiKa expected performances J.D. Desjonquères (1), N. Steunou (1) A. Quesney (2)
Sentinel-5 precursor: TROPOMI Cloud slicing retrieval: Program development and testing with SCIAMACHY/GOME-2 WFDOAS data Kai-Uwe Eichmann, Mark Weber,
Lidar+Radar ice cloud remote sensing within CLOUDNET. D.Donovan, G-J Zadelhof (KNMI) and the CLOUDNET team With outside contributions from… Z. Wang (NASA/GSFC)
European Geophysical Union, Wien, 6 April 2011 Institute of Oceanography University of Hamburg Werner Alpers Institute of Oceanography, University of Hamburg,
Validation of SCIAMACHY total ozone: ESA/DLR V5(W) and IUP WFDOAS V2(W) M. Weber, S. Dikty, J. P.Burrows, M. Coldewey-Egbers (1), V. E. Fioletov (2), S.
CBH statistics for the Provisional Review Curtis Seaman, Yoo-Jeong Noh, Steve Miller and Dan Lindsey CIRA/Colorado State University 12/27/2013.
Central EuropeUS East CoastJapan Global satellite observations of the column-averaged dry-air mixing ratio (mole fraction) of CO 2, denoted XCO 2, has.
INFRARED-DERIVED ATMOSPHERIC PROPERTY VALIDATION W. Feltz, T. Schmit, J. Nelson, S. Wetzel-Seeman, J. Mecikalski and J. Hawkinson 3 rd Annual MURI Workshop.
Use of Solar Reflectance Hyperspectral Data for Cloud Base Retrieval Andrew Heidinger, NOAA/NESDIS/ORA Washington D.C, USA Outline " Physical basis for.
M. Reuter, EMS, Berlin, September 2011 Retrieval of atmospheric CO 2 from satellite near-infrared nadir spectra in the frame of ESA’s climate change initiative.
S5P cloud products Sebastián Gimeno García, Ronny Lutz, Diego Loyola German S5P Verification Meeting 1 Bremen, November Chart 1>
Retrieval of Cloud Phase and Ice Crystal Habit From Satellite Data Sally McFarlane, Roger Marchand*, and Thomas Ackerman Pacific Northwest National Laboratory.
SATELLITE REMOTE SENSING OF TERRESTRIAL CLOUDS Alexander A. Kokhanovsky Institute of Remote Sensing, Bremen University P. O. Box Bremen, Germany.
October 02, st IHOP_2002 Water Vapor Intercomparison Workshop Status of intercomparisons and the next steps  Characterize moisture measuring techniques.
DEPARTMENT OF GEOMATIC ENGINEERING Validation of MODIS Cloud products through an inter- comparison with MISR, GOES and ground-based radar/lidar Jan-Peter.
SEMIANALYTICAL CLOUD RETRIEVAL ALGORITHM AND ITS APPLICATION TO DATA FROM MULTIPLE OPTICAL INSTRUMENTS ON SPACEBORNE PLATFORMS: SCIAMACHY, MERIS, MODIS,
S5P tropical tropospheric ozone product based on convective cloud differential method Klaus-Peter Heue, Pieter Valks, Diego Loyola, Deutsches Zentrum für.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Cloud property retrieval from hyperspectral IR measurements Jun Li, Peng Zhang, Chian-Yi Liu, Xuebao Wu and CIMSS colleagues Cooperative Institute for.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
Caroline Poulsen ATSR-2 Group Cloud parameters estimated by variational analysis of visible and infrared measurements from ATSR-2 Caroline Poulsen, Richard.
Impact of 3D Clouds on Aerosol Retrievals Guoyong Wen 1,2 Alexander Marshak 1 Robert F. Cahalan 1 Lorraine Remer 1 Richard Kleidman 1,3 1 NASA/Goddard.
May 15, 2002MURI Hyperspectral Workshop1 Cloud and Aerosol Products From GIFTS/IOMI Gary Jedlovec and Sundar Christopher NASA Global Hydrology and Climate.
UNIVERSITY OF BASILICATA CNR-IMAA (Consiglio Nazionale delle Ricerche Istituto di Metodologie per l’Analisi Ambientale) Tito Scalo (PZ) Analysis and interpretation.
The study of cloud and aerosol properties during CalNex using newly developed spectral methods Patrick J. McBride, Samuel LeBlanc, K. Sebastian Schmidt,
BrO vertical profiles from SCIAMACHY limb measurements: Validation of scientific product using balloon-borne and ground-based measurements Retrievals.
W. Smith, D. Spangenberg, S. Sun-Mack, P.Minnis
Definition of SCIAMACHY Diagnostic Data Set
Cloud Property Retrievals over the Arctic from the NASA A-Train Satellites Aqua, CloudSat and CALIPSO Douglas Spangenberg1, Patrick Minnis2, Michele L.
AIRS Sounding and Cloud Property Study
NPOESS Airborne Sounder Testbed (NAST)
German Aerospace Center – Space Administration
Wei Huang Class project presentation for ECE539
Mike Pavolonis (NOAA/NESDIS/STAR)
Optical particle sizing in vertically inhomogeneous turbid media
Igor Appel Alexander Kokhanovsky
M. De Graaf1,2, K. Sarna2, J. Brown3, E. Tenner2, M. Schenkels4, and D
Radar-lidar retrievals of water cloud parameters
Meteorological Instrumentation and Observations
Presentation transcript:

The inter-comparison of SCIAMACHY and radar cloud top heights Alexander A. Kokhanovsky(1), C. Naud(2), A. Devasthale(3) (1)Institute of Remote Sensing, Bremen University Bremen, Germany (2) NASA GISS, New York, USA (3) Max Planck Institute for Meteorology, Hamburg, Germany

CONTENTS 1.Rationale 2.Cloud retrievals using SACURA: the accuracy of the forward model 3.Inter-comparison study 4.Conclusions

Rationale: The validation of satellite-derived cloud top heights is needed to establish the accuracy of a given technique for the CTH determination. This can be done either using highly accurate lidar or radar systems in space or on ground.

CLOUD RETRIEVALS USING SACURA: THE ACCURACY OF THE FORWARD MODEL and the physical principles behind retrievals

The cloud optical thickness determination: the physical principle Symbols-SCIATRAN

The effective radius determination from a satellite

The cloud top height determination from a satellite The physical principle behind the retrieval

Preliminary results ! Teh cloud geometrical thickness/bottom height determination from a satellite

Inter-comparisons 36.6N; 97.5W

Radar: 35-GHz Millimeter wave Cloud Radar 36.6N; 97.5W ARM (USA): 25min 0.5deg

Low clouds scia CF radar

Low clouds CF scia radar

High Clouds

The inter-comparisons of CTHs derived using SCIAMACHY, MODIS, and MERIS radar satellite

Table 1. Cloud top heights (in km) of low-level clouds derived from radar and satellite data Date(d/m/year)RadarSCIAMERISMODIS 10/03/ /03/ /05/ /11/ /11/ /06/ / 04/ Table 2. Cloud top heights (in km) of high-level clouds derived from radar and satellite data Date(d/m/year)RadarSCIAMERISMODIS 17/04/ /05/ /06/ /10/ /11/ /11/ /11/ Table 1. Cloud top heights (in km) of low-level clouds derived from radar and satellite data

Statistical data: average CTH (km) RadarSCIAMERISMODIS Low- level clouds High- level clouds

Conclusions The max error of the cloud top height retrievals for low clouds (below 2km) is in the range [-0.5km; 0.5km] The max error for high clouds(10-12km) is in the range [-3km;+3km].

Acknowledgements J. P. Burrows W. von Hoyningen-Huene V. V. Rozanov, H. Bovensmann, M. Vountas, W. Lotz ESA, DLR