LS-Dyna and ANSYS Calculations of Shocks in Solids Goran Skoro University of Sheffield.

Slides:



Advertisements
Similar presentations
Matt Rooney RAL The T2K Beam Window Matt Rooney Rutherford Appleton Laboratory BENE November 2006.
Advertisements

LS-Dyna and ANSYS Calculations of Shocks in Solids Goran Skoro University of Sheffield.
Proposal for a programme of Neutrino Factory research and development WP-3 The Target The Neutrino Factory Target Lead Author - J R J Bennett CCLRC, RAL.
STATICALLY DETERMINATE STRESS SYSTEMS
Plasticity Jake Blanchard Spring Analysis of Plastic Behavior Plastic deformation in metals is an inherently nonlinear process Studying it in ANSYS.
Thermal Shock Measurements for Solid High-Power Targets at High Temperatures J. R. J. Bennett 1, G. Skoro 2, J. Back 3, S. Brooks 1, R. Brownsword 1, C.
Shock simulations in solid targets Chris Densham Rutherford Appleton Laboratory.
UKNFWG 12 January 2005Chris Densham Shock Waves in Solid Targets Preliminary Calculations.
Laser Doppler Vibrometer tests Goran Skoro UKNF Meeting 7-8 January 2010 Imperial College London UKNF Target Studies Web Page:
Solid Targets for the Neutrino Factory J R J Bennett Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK
Tungsten wire & VISAR Goran Skoro 24 October 2008.
Thermal Shock Measurements and Modelling for Solid High-Power Targets at High Temperatures J. R. J. Bennett 1, G. Skoro 2, J. Back 3, S. Brooks 1, R. Brownsword.
1 Thermal Shock Measurements and Modelling for Solid High-Power Targets at High Temperatures J. R. J. Bennett 1, G. Skoro 2, S. Brooks 1, R. Brownsword,
Studies of solid high-power targets Goran Skoro University of Sheffield HPT Meeting May 01 – 02, 2008 Oxford, UK.
Modelling shock in solid targets Goran Skoro (UKNF Collaboration, University of Sheffield) NuFact 06 UC Irvine, August 24-30, 2006.
Mercury Jet Studies Tristan Davenne Rutherford Appleton Laboratory Joint UKNF, INO, UKIERI meeting 2008 University of Warwick, Physics Department 3-4 April.
LS-DYNA Simulations of Thermal Shock in Solids Goran Skoro University of Sheffield.
R&D Studies on Solid Targets in the UK J. R. J. Bennett Rutherford Appleton Laboratory
 Stephen Brooks / UKNF meeting, Warwick, April 2008 Pion Production from Water-Cooled Targets.
HYDRODYNAMIC EVOLUTION OF IFE CHAMBERS WITH DIFFERENT PROTECTIVE GASES AND PRE-IGNITION CONDITIONS Zoran Dragojlovic and Farrokh Najmabadi University of.
Solid Target Studies in the UK Solid Target Studies in the UK Rob Edgecock On behalf of: J.Back, E.Bayham, R.Bennett, S.Brooks R.Brownsword, O.Caretta,
Solid Target Studies for NF Solid Target Studies for NF Rob Edgecock 22 Sept On behalf of: J.Back, R.Bennett, S.Gray, A.McFarland, P.Loveridge &
EUROnu and NF-IDS Target Meeting, CERN, March 2008 Progress on Solid Target Studies J. R. J. Bennett 1, G. Skoro 2, J. Back 3, S. Brooks 1, R. Brownsword.
MuTAC Review - March Solid Target Studies N. Simos Brookhaven National Laboratory.
1 Tests Using The “Little Wire Test” Equipment (Apr. 4, 2013) J. R. J. Bennett 1, G. Skoro 1(2), P. Loveridge 1, A. Ahmad 2 1.Fatigue Life of Tungsten.
Chapter 5 Vibration Analysis
FETS-HIPSTER (Front End Test Stand – High Intensity Proton Source for Testing Effects of Radiation) Proposal for a new high-intensity proton irradiation.
RF-Accelerating Structure: Cooling Circuit Modeling Riku Raatikainen
Static & dynamic stresses from beam heating in targets & windows T. Davenne High Power Targets Group Rutherford Appleton Laboratory Science and Technology.
VISAR & Vibrometer results Goran Skoro (University of Sheffield) UK Neutrino Factory Meeting Lancaster, April 2009.
Large SOLID TARGETS for a Neutrino Factory J. R. J. Bennett Rutherford Appleton Laboratory
Chris Densham Engineering Analysis Group Shock wave studies in solid targets FAIR Super-FRS production targets Synergy with some targets for other accelerator.
LS-Dyna and ANSYS Calculations of Shocks in Solids Goran Skoro University of Sheffield.
1 cm diameter tungsten target Goran Skoro University of Sheffield.
Solid Target Studies for NF Solid Target Studies for NF Rob Edgecock On behalf of: J.Back, R.Bennett, S.Gray, A.McFarland, P.Loveridge & G.Skoro Tungsten.
Progress on Solid Target Studies J. R. J. Bennett Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX 2 nd Oxford-Princeton High-Power Target.
Thermomechanical characterization of candidate materials for solid high power targets Goran Skoro, R. Bennett, R. Edgecock 6 November 2012 UKNF Target.
Brookhaven Science Associates U.S. Department of Energy MUTAC Review April , 2004, LBNL Target Simulation Roman Samulyak, in collaboration with.
WIRE: many pulses effects Goran Skoro (University of Sheffield) Target Meeting 6 April 2006.
1 Optical Diagnostic Results of MERIT Experiment and Post-Simulation H. Park, H. Kirk, K. McDonald Brookhaven National Laboratory Princeton University.
Numerical Simulations of Silverpit Crater Collapse: A Comparison of TEKTON and SALES 2 Gareth Collins, Zibi Turtle, and Jay Melosh LPL, Univ. of Arizona.
Reducing shock in the Neutrino Factory target Goran Skoro (University of Sheffield) UKNF Meeting 11 January 2006.
Stress and Strain – Axial Loading
BNL E951 BEAM WINDOW EXPERIENCE Nicholas Simos, PhD, PE Neutrino Working Group Brookhaven National Laboratory.
Calculation of Beam loss on foil septa C. Pai Brookhaven National Laboratory Collider-Accelerator Department
UKNF 12 January 2005 Target Studies J R J Bennett RAL.
Collimation for the Linear Collider 15 th Feb 2005 Chris Densham RAL Elastic Stress Waves in candidate Solid Targets for a Neutrino Factory.
Investigation of a “Pencil Shaped” Solid Target Peter Loveridge, Mike Fitton, Ottone Caretta High Power Targets Group Rutherford Appleton Laboratory, UK.
Superbeam target work at RAL Work by: Ottone Caretta, Tristan Davenne, Peter Loveridge, Chris Densham, Mike Fitton, Matt Rooney (RAL) EURONu collaborators:
SPL-SB and NF Beam Window Studies Stress Analysis Matt Rooney, Tristan Davenne, Chris Densham March 2010.
Parameters of the NF Target Proton Beam pulsed10-50 Hz pulse length1-2  s energy 2-30 GeV average power ~4 MW Target (not a stopping target) mean power.
Shock Tests on Tantalum and Tungsten J. R. J. Bennett, S. Brooks, R. Brownsword, C. Densham, R. Edgecock, S. Gray, A. McFarland, G. Skoro and D. Wilkins.
Issues Raised by the Design of the LHC Beam Dump Entrance Window Ray Veness / CERN With thanks to B.Goddard and A.Presland.
Alessandro BertarelliTS department Seminar, 3 rd May 2006 EDMS Alessandro Dallocchio 1,2 Alessandro Bertarelli 1 1 TS department – Mechanical and Material.
EGM 5653 Advanced Mechanics of Materials
ENG/BENE, ENG Plenary, 16 March 2005 The New UK Programme for Shock Studies J R J Bennett RAL.
Design for a 2 MW graphite target for a neutrino beam Jim Hylen Accelerator Physics and Technology Workshop for Project X November 12-13, 2007.
Thermo-mechanical modeling of high energy particle beam impacts M. Scapin*, L. Peroni*, A. Dallocchio** * Politecnico di Torino, Corso Duca degli Abruzzi,
New nTOF target: Design Issues
CHAPTER 2 - EXPLICIT TRANSIENT DYNAMIC ANALYSYS
Peter Loveridge High Power Targets Group
Beam Window Studies for Superbeams
Static & dynamic stresses from beam heating in targets & windows
Target R&D for JHF neutrino
Parameters of the NF Target
EUROnu Beam Window Studies Stress and Cooling Analysis
accident deformation – doyle (rev1) 1/8
External Review of LHC Collimation Project Oliver Aberle 1th July 2004
ANALYSIS OF THE HORN UNDER THERMAL SHOCK – FIRST RESULTS
accident deformation – doyle 1/8
Presentation transcript:

LS-Dyna and ANSYS Calculations of Shocks in Solids Goran Skoro University of Sheffield

Contents: Intro PART I Some history ANSYS results PART II LS-Dyna results NF Target Test measurements (current pulse; tantalum wire) Summary C. J. Densham (RAL), UKNF Meeting, January 2005.

Introduction The target is bombarded at up 50 Hz by a proton beam consisting of ~1ns long bunches in a pulse of a few micro-s length. The target material exposed to the beam will be ~ 20cm long and ~2cm in diameter. Energy density per pulse ~ 300 J/cc. Thermaly induced shock (stress) in target material (tantalum). Knowledge of material properties and stress effects: measurements and simulations! NF R&D Proposal

Codes used for study of shock waves Specialist codes eg used by Fluid Gravity Engineering Limited – Arbitrary Lagrangian-Eulerian (ALE) codes (developed for military)  Developed for dynamic e.g. impact problems  ALE not relevant? – Useful for large deformations where mesh would become highly distorted  Expensive and specialised LS-Dyna  Uses Explicit Time Integration (ALE method is included) – suitable for dynamic e.g. Impact problems  Should be similar to Fluid Gravity code ANSYS  Uses Implicit Time Integration  Suitable for ‘Quasi static’ problems

Implicit vs Explicit Time Integration Explicit Time Integration (used by LS Dyna) Central Difference method used Accelerations (and stresses) evaluated Accelerations -> velocities -> displacements Small time steps required to maintain stability Can solve non-linear problems for non-linear materials Best for dynamic problems

Implicit vs Explicit Time Integration Implicit Time Integration (used by ANSYS) - Finite Element method used Average acceleration calculated Displacements evaluated Always stable – but small time steps needed to capture transient response Non-linear materials can be used to solve static problems Can solve non-linear (transient) problems… …but only for linear material properties Best for static or ‘quasi’ static problems

PART I Hydrocode (FGE) and ANSYS results

The y axis is radius (metres) Study by Alec Milne, Fluid Gravity Engineering Limited from 300K to 2300K and left to expand” “Cylindrical bar 1cm in radius is heated instantaneously

Study by Alec Milne Fluid Gravity Engineering Limited Alec Milne: “We find that these models predict there is the potential for a problem […]. These results use 4 different material models. All of these show that the material expands and then oscillates about an equilibrium position. The oscillations damp down but the new equilibrium radius is 1.015cm. i.e. an irreversible expansion of 150 microns has taken place. The damping differs from model to model. The key point is all predict damage.”

ANSYS benchmark study: same conditions as Alec Milne/FGES study i.e.ΔT = 2000 K The y axis is radial deflection (metres)

Comparison between Alec Milne/FGES and ANSYS results 160 microns150 micronsMean expansion 8.3 micro-s7.5 micro-sRadial oscillation period 120 microns100 micronsAmplitude of initial radial oscillation ANSYSAlec Milne/ FGES

Elastic shock waves in a candidate solid Ta neutrino factory target 10 mm diameter tantalum cylinder 10 mm diameter proton beam (parabolic distribution for simplicity) 300 J/cc/pulse peak power (Typ. for 4 MW proton beam depositing 1 MW in target) Pulse length = 1 ns

Elastic shock waves in a candidate solid Ta neutrino factory target Temperature jump after 1 ns pulse (Initial temperature = 2000K )

Elastic shock waves in a candidate solid Ta neutrino factory target Elastic stress waves in 1 cm diameter Ta cylinder over 10 μs after ‘instantaneous’ (1ns) pulse Stress (Pa) at :centre (purple) and outer radius (blue)

PART II LS-Dyna results General purpose explicit dynamic finite element program Used to solve highly nonlinear transient dynamics problems  Advanced material modeling capabilities  Robust for very large deformation analyses LS-Dyna solver  Fastest explicit solver in marketplace  More features than any other explicit code

Material model used in the analysis Temperature Dependent Bilinear Isotropic Model  'Classical' inelastic model  Nonlinear – Uses 2 slopes (elastic, plastic) for representing of the stress-strain curve – Inputs: density, Young's modulus, CTE, Poisson's ratio, temperature dependent yield stress,... Element type: LS-Dyna Explicit Solid Material: TANTALUM

Study by Alec Milne, Fluid Gravity Engineering Limited ANSYS LS-Dyna ~190 microns [m] [s] “ Cylindrical bar 1cm in radius is heated instantaneously f rom 300K to 2300K and left to expand”

First studies Because the target will be bombarded at up 50 Hz by a proton beam consisting of ~1ns long bunches in a pulse of a few micro-s length we have studied: The effect of having different number of bunches in a pulse; The effect of having longer bunches (2 or 3 ns); The effect of different length of a pulse.

Geometry: NF target 2cm 20cm Boundary conditions: free Uniform thermal load of 100K (equivalent energy density of ~ 300 J/cc) T initial = 2000K

Characteristic time = radius / speed of sound in the tantalum

BUT, -At high temperatures material data is scarce… -Hence, need for experiments to determine material model data (J.R.J. Bennett talk): -Current pulse through wire (equivalent to ~ 300 J/cc); -Use VISAR to measure surface velocity; -Use results to 'extract' material properties at high temperatures... -and test material 'strength' under extreme conditions....

to vacuum pump heater test wire insulators to pulsed power supply water cooled vacuum chamber Schematic diagram of the test chamber and heater oven.

Doing the Test - J. R.J. Bennet The ISIS Extraction Kicker Pulsed Power Supply Time, 100 ns intervals Voltage waveform Rise time: ~100 ns Flat Top: ~500 ns Exponential with 20 ns risetime fitted to the waveform

Radial displacement of tantalum wire after 2 micro-s ms [mm] Temperature rise: 100K in 1 micro-s Tinitial : 2000K

heat input stops

Summary Results (NF): The effect of having different number of bunches (n) in a pulse: at the level of 10-20% when n=1 -> n=10 The effect of having longer bunches (2 or 3 ns): No The effect of different length of a pulse: Yes Results (test, wire): Estimate of surface velocities needed for VISAR measurements