Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Local properties on molecular surfaces Tim Clark Computer-Chemie-Centrum Friedrich-Alexander-Universität.

Slides:



Advertisements
Similar presentations
Chemistry of Water Chapters What Makes Water So Special? Polarity- waters bent shape creates δ- and δ+ areas in the molecule.
Advertisements

1 Physical Chemistry III Molecular Interactions Piti Treesukol Chemistry Department Faculty of Liberal Arts and Science Kasetsart University :
A new paradigm for virtual screening A Research Council’s Basic Technology Research Programme.
Chiral HPLC.
Intermolecular Forces Section 4.3. Introduction There are ionic, giant covalent, and simple molecular covalent bonds between atoms If there are no attractive.
Bonding IB Chemistry 2 Robinson High School Andrea Carver.
Solvation Models. Many reactions take place in solution Short-range effects Typically concentrated in the first solvation sphere Examples: H-bonds,
FORCES GOVERNING BIOLOGICAL SYSTEMS. Electronic structure of atoms Negatively charged electrons revolve around positively charged nucleus. Atom.
Quantum Mechanics and Force Fields Hartree-Fock revisited Semi-Empirical Methods Basis sets Post Hartree-Fock Methods Atomic Charges and Multipoles QM.
Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Virtual screening and modelling: must it be atoms? Tim Clark Computer-Chemie-Centrum Universität Erlangen-Nürnberg.
Ion Solvation Thermodynamics from Simulation with a Polarizable Force Field Gaurav Chopra 07 February 2005 CS 379 A Alan GrossfeildPengyu Ren Jay W. Ponder.
FORMAL CHARGE Formal Charge N :..... N :.... H H NH 2 - Bonded Unbonded Number of All One half of = valence electrons unshared + all shared in the neutral.
Lecture 3 – 4. October 2010 Molecular force field 1.
Summary Molecular surfaces QM properties presented on surface Compound screening Pattern matching on surfaces Martin Swain Critical features Dave Whitley.
Quantitative Structure-Activity Relationships (QSAR) Comparative Molecular Field Analysis (CoMFA) Gijs Schaftenaar.
Computer-Chemie-Centrum Friedrich-Alexander-Universität
Bioinformatics IV Quantitative Structure-Activity Relationships (QSAR) and Comparative Molecular Field Analysis (CoMFA) Martin Ott.
Chapter 2 Structure and Properties of Organic Molecules
Shapes and Polarity Vocabulary Polar covalent bond VSEPR model
Computer-Chemie-CentrumUniversität Erlangen-Nürnberg ParaSurf Surface- Generation Program Tim Clark Computer-Chemie-Centrum Friedrich-Alexander-Universität.
Quantitative Structure- Activity Relationships (QSAR)
Intermolecular Forces, Liquids and Solids CHAPTER 11 CHEM 160.
Lecture 7: Computer aided drug design: Statistical approach. Lecture 7: Computer aided drug design: Statistical approach. Chen Yu Zong Department of Computational.
TOPIC B – INTERMOLECULAR FORCES. Types of Bonding.
1 Physical Chemistry III Molecular Interactions Piti Treesukol Chemistry Department Faculty of Liberal Arts and Science Kasetsart University :
Molecular Descriptors
BINF6201/8201 Principle components analysis (PCA) -- Visualization of amino acids using their physico-chemical properties
Chapter 11. Liquids, Solids & Forces of Attraction CHE 124 General Chemistry II Dr. Jerome K. Williams, PhD Saint Leo University.
Monte-Carlo simulations of the structure of complex liquids with various interaction potentials Alja ž Godec Advisers: prof. dr. Janko Jamnik and doc.
Bonding IB Chemistry 2 Robinson High School Andrea Carver.
Leapfrog: how to solve Newton’s 2 nd Law on the computer credit: Zhijun Wu, Department of Mathematics, Iowa State University Newton’s equations.
Ch. 12: Liquids, Solids, and Intermolecular Forces
Intermolecular Forces, Liquids, and Solids
DO NOW: Rank the following phases of matter in order from least to greatest for… A) Energy B) Intermolecular Forces High Energy Medium Energy Low Energy.
Where HOMO is the highest occupied MO, LUMO is the lowest unoccupied MO, norbs is the number of Mos,  i the electron density attributable to the i th.
Bonding Chapter 8. Types of Chemical Bonds Ionic Bonds – metals/nonmetals o Electrons are transferred o Ions paired have lower energy (greater stability)
Chem 1140; Molecular Modeling Molecular Mechanics Semiempirical QM Modeling CaCHE.
1 MacSpartan A Tutorial on intended as a general reference to use of the MacSpartan. This tutorial provides a brief overview describes in detail the various.
Chem 106, Prof. T. L. Heise 1 CHE 106: General Chemistry  CHAPTER ELEVEN Copyright © Tyna L. Heise 2001 All Rights Reserved.
1.Solvation Models and 2. Combined QM / MM Methods See review article on Solvation by Cramer and Truhlar: Chem. Rev. 99, (1999)
Performance of Molecular Polarization Methods Marco Masia.
“Emergency discovery” of novel antimicrobials among known drugs in response to new and re-emerging infectious threats A. Cherkasov UBC / VGH Infectious.
 Receptors are mostly membrane-bound proteins that selectively bind small molecules called ligands which results in physiological response.  They are.
Intermolecular Forces Section 6.5. Introduction We will consider ionic and covalent bonds between atoms If there are no attractive forces between molecules,
Crash Course in Chemistry
Applications III: Excited States, Solutions, Surfaces Lecture CompChem 7 Chemistry 347 Hope College.
Lecture 16 – Molecular interactions
Mechanism of Separation trouble shooting Terminology, Physical forces and their effect on separation, band broadening, resolution, optimization parameters,
Covalent Bonds Ch 8. Covalent Bonding In these bonds electrons are shared between the nuclei of two atoms to form a molecule or polyatomic ion Usually.
TURBOMOLE Lee woong jae.
Quantum Mechanics/ Molecular Mechanics (QM/MM) Todd J. Martinez.
Section 12.1 Characteristics of Chemical Bonds 1.To understand the nature of bonds and their relationship to electronegativity 2.To understand bond polarity.
Dipole Moments of Diatomics QEq benchmarked against experimental values for 94 molecules Qualitatively correct trend Poor agreement for high bond orders.
Thermodynamics of Associating Fluids 1. Chains of molecules Many molecules are not spherical, but could be represented as consisting of connected spherical.
Development of Methods for Predicting Solvation and Separation of Energetic Materials in Supercritical Fluids Jason Thompson, Casey Kelly, Benjamin Lynch,
A chemical bond’s character is related to each atom’s attraction for the electrons in the bond. Section 5: Electronegativity and Polarity K What I Know.
Elon Yariv Graduate student in Prof. Nir Ben-Tal’s lab Department of Biochemistry and Molecular Biology, Tel Aviv University.
Structure and Properties of Organic Molecules
Chapter 2 Copyright © 2010 Pearson Education, Inc. Organic Chemistry, 7 th Edition L. G. Wade, Jr. Structure and Properties of Organic Molecules.
1 Organic Chemistry MDL233 Chapter 2 BY Mahwash Hafeez.
SMA5422: Special Topics in Biotechnology Lecture 11: Computer aided drug design: QSAR approach. SMA5422: Special Topics in Biotechnology Lecture 11: Computer.
. The greek symbol  indicates “partial charge”. H2H2 HClLiCl ++ –– 00 00 +– 1. Non-polar covalent 2. Polar covalent3. Ionic HH H Cl [Li] + [
Polarity and Intermolecular (IM) Forces (Interactions)
Covalent Bonding Electron Sharing.
Covalent Bonding Electron Sharing.
Covalent Bonding Electron Sharing.
Structures of pure carbon (allotropes)
Chapter 11 Liquids, solids, and intermolecular forces
Chapter 10 Chemical Bonding II
Physical Chemistry Chapter VI Interaction between Molecules 2019/5/16
Presentation transcript:

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Local properties on molecular surfaces Tim Clark Computer-Chemie-Centrum Friedrich-Alexander-Universität Erlangen-Nürnberg

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Descriptions of Molecules

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Intermolecular Interactions Physical components are well known Coulomb Donor/acceptor Dispersion (and repulsion) We are accustomed to atom-atom approaches Force fields QSAR and QSPR Are there alternatives?

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg QM-Based Descriptors “Electronic“ Molecular Electrostatic Potential (MEP) Polarizability Donor/Acceptor Properties Multipole Moments Molecular surface Local properties at a surface Isodensity (DFT, Murray and Politzer) SES (fast) Statistics of the local property as descriptors MEP (Murray and Politzer)

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Surface Descriptors MEP at the surface has a physical basis. We should be able to describe intermolecular interactions using only surface properties. Scaffold-Hopping is more likely if we use only surface- based descriptors. Surface integral-models provide an interesting alternative to statistical QSPR BUTAtom-based simulation methods scale badly (because they treat atoms) BUT Surface-based descriptors are expensive to calculate... and difficult to interpret.

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg How Many Descriptors do we need for Physical Properties? (and what are they?) Choose 26 descriptors that appear again and again in our QSPR-models Calculate them for the entire Maybridge database Calculate the principal components (factors) What is the dimensionality of physical property space, what are the descriptors?

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg PC-Eigenvalues: Scree Plot

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Prinvipal Components PC #Main descriptorsInterpretation 1Polarizability, molecular weight, volume, surface area, globularity Size, shape 2Maximum MEP, mean positive and negative MEPs, total variance Complementary electrostatic surface descriptors 3Minimum MEP, mean negative MEP, balance parameter

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Physical property Space PC #Main descriptorsInterpretation 4Total MEP-derived charges on nitrogens, # H-bond donors Complementary Hydrogen-bonding descriptors 5Total MEP-derived charges on H and O, minimum MEP, # aromatic rings 6Dipole moment, dipolar densityDipolar polarity 7-9Total MEP charges on different types of atom Chemical diversity

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg What is Missing? Purely electrostatic interactions are described well Donor/Acceptor, Electronegativity and Hardness are described by the atom-specific descriptors Sums of potential-derived charges Counts of H-bond donors and acceptors Number of aromatic rings etc. Can we design suitable local properties ?

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Local Ionization Energy Sjoberg, P.; Murray, J. S.; Brinck, T.; Politzer, P. A., Can. J. Chem. 1990, 68, 1440; Murray, J. S.; Abu-Awwad, F.; Politzer, P., THEOCHEM 2000, , 241; Hussein, W.; Walker, C. G.; Peralta-Inga, Z.; Murray, J. S., Int. J. Quant. Chem. 2001, 82, 160; Politzer, P.; Murray, J. S.; Concha, M. C., Int. J. Quant. Chem. 2002, 88,19.

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Local Ionization Energy MEP IE L

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Local Ionization Energy

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Other Local Properties Local Electron affinity: Local Hardness:

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Local Electron Affinity

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Local Electron Affinity Fukui Function

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Local Hardness

Computer-Chemie-CentrumUniversität Erlangen-NürnbergPolarizabilty Variational method (Rinaldi and Rivail 1974) Fast (no need for excited states) Comparable to a population analysis

Variational Method (AM1) Std. dev. = 2.99 Å 3 PM3 : 4.44 Å 3 MNDO : 1.94 Å 3 Computer-Chemie-CentrumUniversität Erlangen-Nürnberg

Parametrized Method (AM1) Test Set Std. dev. = 0.70 Å 3 PM3 : 0.74 Å 3 MNDO : 0.78 Å 3 Computer-Chemie-CentrumUniversität Erlangen-Nürnberg G. Schürer, P. Gedeck, M. Gottschalk, T. Clark, Int. J.Quant. Chem., 1999, 75,

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Atomic and “Orbital-“ Polarizabilities Additivity: Partitioning:

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg One-Center Terms

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Two-Center Terms B. Martin, P. Gedeck, T. Clark, Int. J. Quant. Chem., 2000, 77, 473.

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg The Additive Molecular Polarizability (AM1) Std. dev. = 0.59 PM3 : 0.65 MNDO : 0.60

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Atomic Polarizability Tensors: p-Bromotoluene

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Local Polarizability Density due to a singly occupied atomic orbital j Coulson population of atomic orbital j Mean polarizability calculated for atomic orbital j

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Local Polarizability

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Correlations Between Local Properties on Molecular Surfaces MEPIE L EA L LL LL MEP1 IE L EA L LL LL

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg PC-Eigenvalues (Maybridge)

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Principal Components Nr.Descriptors% Variance 1 Electrostatic descriptors, local donor/acceptor descriptors Local electron affinity descriptors, local polarizability descriptors Molecular weight, volume, area, globularity 13.7 (23% before) 4 MEP-derived descriptors Acceptor properties Polarizability 4.8

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Boiling Points (N = 5453): Leave 10% out Cross-validation “old“ and “new“ descriptors 18 Descriptors (18:10:1 = 239 weights) MSE = 0.02 MUE = 17.3 RMSD = Descriptors (10:9:1 = 128 weights) MSE = 0.3 MUE = 14.6 RMSD = 21.0

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Surface-integral models P = target property A i = area of triangle i ntri = number of triangles

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Surface-integral models MolFESD: Pixner, P.; Heiden, W.; Merx, H.; Möller, A.; Moeckel, G.; Brickmann, J. J. Chem. Inf. Comput. Sci. 1994, 34, Jäger, T.; Schmidt, F.; Schilling, B.; Brickmann, J. J. Comput.-Aided Mol. Des. 2000, 14, Jäger, R.; Kast, S. M.; Brickmann,. J. Chem. Inf. Comput. Sci. 2003, 43, GB/PSA: Best, S. A.; Merz, K. M., Jr.; Reynolds, C. H.. J. Phys. Chem. B 1997, 101,

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Free energies of hydration

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Free energies of hydration

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Free energies of solvation: n-octanol

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Free energies of solvation: chloroform

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Enthalpies of hydration

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Partial solvation Ligand Water Receptor

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Sources of data The available data are limited in Number Quality Use alternative sources e.g. for solvation free energies Gas phase proton affinites (G3) pK a s

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Physical-Property Mapping Maybridge used as the “chemistry“ dataset Use the top six principal components to train a 100  100 Kohonen net (unsupervised training) 2,105 compounds selected from the World Drug Index as real drugs used as the drug dataset

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Physical Property Map “chemistry“ Train Kohonen Net “Drugs“

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Physical Property Map: Drugs

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Physical Property Map: Hormones

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Model Applicabilty, Maps as Models? Aqueous solubility 550 (ompounds)

Computer-Chemie-CentrumUniversität Erlangen-Nürnberg Acknowledgments Dr. Bernd Beck Dr. Andrew Chalk Dr. Peter GedeckDr. Bill King Dr. Harry Lanig Dr. Torsten Schindler Dr. Cenk Selçuki Dr. Paul Winget Matthias Brüstle Bernd Ehresmann Matthias Hennemann Anselm Horn Bodo Martin Gudrun Schürer Kendall BylerJr-Hung Lin Dr. Tim F. Mitchell (Cambridge Combinatorial) Prof. Johnny Gasteiger Pfizer (Dr. Alexander Alex, Dr. Marcel de Groot) Bayer Pharma (Dr. Andreas Göller, Dr. Jörg Kenderich) 4SC Scientific (Dr. Thomas Herz) Alexander-von-Humboldt Foundation Hewlett-Packard