SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Vladimir Vasiliev, UCL 2-6 May ’06, Stockholm on behalf of NEMO and SuperNEMO collaborations NEMO.

Slides:



Advertisements
Similar presentations
Neutrino group at CENBG
Advertisements

NEMO-III Status and prospects. 12 December 2005 HEP group Christmas meeting Vladimir Vasiliev.
NEMO-3 experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Coseners House, Abingdon.
SuperNEMO Thoughts about next generation NEMO experiment Ruben Saakyan UCL.
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
 NEMO-3 Detector  Preliminary results Performance of the detector  analysis for 100 Mo, 82 Se and 150 Nd  Background study for  research ( 208.
M. Dracos 1 Double Beta experiment with emulsions?
GERDA: GERmanium Detector Array
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory
The SuperNEMO experiment A very low background experiment Jérémy ARGYRIADES, LAL Orsay.
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
Double Beta Decay Present and Future
First results from NEMO 3 Experiment V. Vasiliev (ITEP), H. Ohsumi (Saga) and Ch. Marquet Nara, Japan, June 2003 NEMO collaboration.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Warsaw - NEMO initiative group Zenon Janas for Search for neutrinoless double  decay in NEMO-3 and SuperNEMO experiments Warszawa,
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
ZSJ IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymentach NEMO-3 i SuperNEMO Kraków,
Status of R&D of the SuperNEMO experiment Gwénaëlle Broudin-Bay LAL Orsay GDR neutrino – Bordeaux – Oct
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
19 July 2012Page 1 Neutrino Mass Julia Sedgbeer High Energy Physics, Blackett Laboratory.
Status of COBRA 6 th SNOLAB Workshop, Picture courtesy
Recent Results of the NEMO 3 Experiment Ladislav VÁLA Czech Technical University in Prague NOW2006, 9 th – 16 th September 2006, Conca Specchiulla, Italy.
Probing neutrino mass with SuperNEMO Ruben Saakyan Ulisse at LSM Workshop 30 June 2008.
Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory FIRST RESULTS Xavier Sarazin 1 for the NEMO-3 Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux,
Neutrino Ettore Majorana Observatory
Yu. Shitov, Imperial College, London  From NEMO-3 to SuperNEMO  Choice of nucleus for measurments  Calorimeter R&D  Low background R&D  Tracker R&D.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
ILIASN4 Cascina, November 3rd, 2005Dominique Lalanne.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Zakład Spektroskopii Jądrowej IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymencie NEMO-3 Warszawa,
1 TAUP - September 7, 2015S. Blot Investigating ββ decay with NEMO-3 and SuperNEMO Summer Blot, on behalf of the NEMO-3 and SuperNEMO experiments 7 September.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
Ultra-low background gamma spectrometry 2 nd LSM-Extension Workshop, Valfréjus, 16 October 2009 Pia Loaiza Laboratoire Souterrain de Modane.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
IOP HEPP Matthew Kauer Double beta decay of Zr96 using NEMO- 3 and calorimeter R&D for SuperNEMO IOP HEPP April Matthew Kauer UCL London.
ILIAS JRA2 : WG1+WG2 Se82, production and purification Cascina, November 3rd, 2005Dominique Lalanne.
DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW.
Neutrino Ettore Majorana Observatory
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
1st Year Talk1 PEP Violation Analysis with NEMO3 and Calorimeter R&D for SuperNEMO Anastasia Freshville.
By Matthew Kauer First Year Report – 15 June 07 Measurement of 2b2ν Half-Life of Zr96 and Lightguide Studies for SuperNEMO Calorimeter Matthew Kauer UCL.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
Pia Loaiza AARM-Berkeley March 2010
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
Nasim Fatemi-Ghomi, Group Christmass Meeting December Nasim Fatemi-Ghomi Double Beta Decay Study of 150 Nd at NEMO3 (The magic isotope!!)
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
P. CermakRez near Prague, December 2005 EC/EC process measurement in TGV experiment For TGV collaboration: JINR Dubna, Russia CTU Prague, Czech Republic.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
V. Egorov. JINR + LSM V. Egorov = The love story 1991 Orsay S.Jullian and D.Lalanne proposed to bring our 2β-spectrometer to Modane 1993 TGV.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
SuperNEMO collaboration
The COBRA Experiment: Future Prospects
Measurement of surface radioactivity by Alpha/Beta detection
Double Beta Decay of 48Ca with CaF2(Eu) - ELEGANT VI -
SuperNEMO 1st Report to Oversight Committee
Nu_2-WP3: R&D for neutrinoless double beta decay experiments
Search for 0nbb decay with SuperNEMO
• • • Ge measurements for SuperNEMO
The 0-neutrino double beta decay search
Double Beta experiment with emulsions?
Presentation transcript:

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Vladimir Vasiliev, UCL 2-6 May ’06, Stockholm on behalf of NEMO and SuperNEMO collaborations NEMO collaboration: IReS, Strasbourg, France; LAL, Orsay, France; INEEL, Idaho Falls, USA; ITEP, Moscow, Russia; CENBG, Bordeaux- Gradignan; JINR, Dubna, Russia; IEAP, Prague, Czech Republic; UCL, London, UK; LPC, Caen, France; Saga Universityt, Japan; LSCE, Gif-sur- Yvette, France; Jyvaskyla University, Finland; MHC, South Hadley, USA; Charles University, Prague, Czech Republic; Manchester University, UK. SuperNEMO collaboration: CENBG Bordeaux-Gradignan; IReS, Strasbourg, France; LAL, Orsay, France; LPC, Caen, France; LSCE Gif- Sur-Yvette, France; Jyvaskula Uiversity, Finland; Saga University, Japan; Osaka University, Japan; Fes University, Marocco; INR RAS, Moscow, Russia; ITEP, Moscow, Russia; JINR, Dubna, Russia; RRC Kurchatov Institute, Moscow, Russia; Charles University, Prague, Czech Republic; Technical University, Prague, Czech Republic; Manchester University, UK; UCL, London, UK; ISMA, Kharkov, Ukraine; INEEL Idaho Falls, USA; Mount Holyoke College, USA; University of Texas, USA; IFIC, Valencia, Spain; Canfranc laboratory, Zaragosa, Spain; NEMO 3 and SuperNEMO experiments

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Neutrinoless  decay Experimental signature: a)2 electrons b)E  + E   Q  NEMO 3. Tracking experiment a) and b). Better signature, control and suppression of background. But worse resolution. Ultimate background –  decay tail.

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments 3 m 4 m B (25 G) 20 sectors NEMO-3 detector Frejus underground laboratory 4800 m.w.e. Source : 10 kg of  isotopes, foil ~ 50mg/cm 2 Tracking detector : drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H 2 O  xy =0,6 cm;  z =1,3 cm; Calorimeter : 1940 plastic scintillators coupled to low radioactivity PMTs FWHM=14% (5”); 17% 1MeV Time resolution = MeV  detection efficiency ≈ 50 % Magnetic field: 25 Gauss (3% e+/e - 1 MeV) Gamma shield: Iron (e = 18 cm) Neutron shield: 30 cm water + boron (ext. wall); 40 cm wood (top and bottom) Able to identify e , e ,  and 

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments  isotope foils scintillators PMTs Calibration tube Cathodic rings Wire chamber

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments 100 Mo kg Q  = 3034 keV 82 Se kg Q  = 2995 keV 116 Cd 405 g Q  = 2805 keV 96 Zr 9.4 g Q  = 3350 keV 150 Nd 37.0 g Q  = 3367 keV Cu 621 g 48 Ca 7.0 g Q  = 4272 keV nat Te 491 g 130 Te 454 g Q  = 2529 keV  measurement Background measurement  search  isotopes in NEMO-3

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Background model External background Detector radioactivity (PMT, iron,  flux from lab). Measured by  Compton scattering in the foil. Radon in tracking chamber 214 Bi pollution of wires and foil surfaces. Measured by delayed 214 Po  -decay. Source foil Internal radioactivity. e and e  events from foil.  decay Cu foil

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Radon free air facility compressor 9-10 bar buffer dryer adsorption -50°C cooler & heater 15 Bq/m 3 15 mBq/m 3 In the tent around NEMO 3 Rn = 150 mBq/m 3 In the tracker Rn = 4.5 mBq/m3  does not depend any more from Rn level in the tent. 2 sets of data Phase-I, before 4/10/04, Rn ≈ 22.2 mBq/m3, Phase-II, Rn=4.5 mBq/m3

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments  results for 100 Mo T 1/2 = 7.11  0.02 (stat)  0.54 (syst)  y Phys Rev Lett 95, (2005) SSD model confirmed HSD, higher levels contribute to the decay SSD, 1  level dominates in the decay (Abad et al., 1984, Ann. Fis. A 80, 9) 100 Mo 00 100 Tc 11 Decay to the excited 0 + state of 100 Ru T 1/2 = 5.7  1.3 (stat)  0.8 (syst)  y To be published soon  Phase I + II ( 587d) Use MC Limit approach: shape information, different background level for PI and PII E 1 +E 2 >2 MeV evs MC = ± 70    T 1/2 > 5.6∙10 23 y, 90% CL Window method [ ] MeV, (690d) 14 evs MC = 13.4   =8.2 % T 1/2 > 5.8∙10 23 y, 90% CL Simkovic, J. Phys. G, 27, 2233, 2001 Single electron spectrum different between SSD and HSD E single (keV) SSD simulation

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments  results for 82 Se T 1/2 = 9.6  0.3 (stat)  1.0 (syst)  y Phys Rev Lett 95, (2005)  Phase I + II ( 587d) Use MC Limit approach E 1 +E 2 >2 MeV 238 evs MC = ± 7    T 1/2 > 2.7∙10 23 y, 90% CL Window method [ ] MeV, (690d) 7 evs MC = 6.4   =14.4 % T > 2.1∙10 23 y, 90% CL

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments  decay for other isotopes 116 Cd, T 1/2 =(2.8±0.1(stat)±0.3(syst))∙10 19 y 150 Nd, T 1/2 =(9.7±0.7(stat) ±1.0(syst))∙10 18 y 96 Zr, T 1/2 =(2.0±0.3(stat)±0.2(syst))∙10 19 y 48 Ca, T 1/2 =(5.3±0.9(stat)±0.5(syst))∙10 19 y Very preliminary results, to be crosschecked and published soon

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Exotic processes search V+A current in electroweak lagrangian Neutrino coupled axions  (majorons) V+A * n=1 ** n=2 ** n=3 ** n=7 ** Mo >3.2∙10 23 <1.8∙10 -6 [1] >2.7∙10 22 g<( )∙10 -4 [3] >1.7∙10 22 >1.0∙10 22 >7∙10 19 Se >1.2∙10 23  2.8 ∙ [2] >1.5∙10 22 g<( )∙10 -4 [3] >6.0∙10 21 >3.1∙10 21 >5.0∙10 20 * new PI+PII data ** R.Arnold et al. Nucl. Phys. A765 (2006) 483 NME Calculations: [1] J. Suhonen, Nucl. Phys. A 700 (2002) 649 [2] M. Aunola and J. Suhonen, Nucl. Phys. A 463 (1998) 207 [3] F. Simkovic et al., Phys. Rev. C 60 (1999) ; S.Stoica and H. Klapdor-Kleingrothaus, Nucl. Phys. A 694 (2001) 269; O. Civatarese and J. Suhonen, Nucl. Phys. A 729 (2003) 867

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments SuperNEMO project extension of NEMO 3 technique 100 kg of isotopes, thin source between tracking volumes, surrounded by calorimeter. sensitivity 1-2∙10 26 y, meV main improvements needed: energy resolution (8% 1MeV ≡ 3MeV) detection efficiency (factor 2) source radio purity (factor 10) background rejection methods

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments SuperNEMO milestones : Design study Calorimeter Tracker Source Site selection (Frejus, Gran Sasso, Canfranc, Bulby) Approved and funded R&D program in UK and France. Spain, Russian and Japan groups applied for funding. end 2008: Full Proposal 2009 – 2011: Production : Start taking data 2015: planned sensitivity ~0.04 eV

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Modular design Top view Side view 5 m 1 m 4 m source tracker calorimeter

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Alternative design (bar scintillator) Double sided readout

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Calorimeter R&D so far  7-8% 1MeV for small scintillator 5x5x2 cm  9% 1 MeV for 15x15x2 cm … but because of light guide!  11-13% 1 MeV for 200 cm bar scintillator. Attenuation length 150 cm! looking for better plastic.

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Wiring robot The challenge: from 6,000 to ~60,000+ cells Wires must be strung terminated crimped This can not be done manually (~10 min/wire) Complications Copper pick-ups Must be cost effective Solder can not be used (radiopurity)

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments BiPo device, ultra low purity msr. Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month   (300 ns) 232 Th 212 Bi (60.5 mn) 208 Tl (3.1 mn) 212 Po 208 Pb (stable) 36%   (164  s) 238 U 214 Bi (19.9 mn) 210 Tl (1.3 mn) 214 Po 210 Pb 22.3 y 0.021% Bi-Po Process WHY?  spectroscopy doesnt sensitive to purity level required ~10  Bq/kg  delay ee Q  ( 214 Bi)=3.2 Me Q  ( 212 Bi) = 2.2 MeV ee e  prompt  T 1/2 ~ 300 ns E deposited ~ 1 MeV Delay 

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Isotope choice Detector allows to hold any isotope. Choice depends on: - enrichment possibilities. Obligatory! - Q  value (phase space factor, background) -  life-time 82 Se good candidate  100 kg per 2-3 y enrichment rate possible in Russia  Q  = 2995 keV. Concern about 214 Bi and 208 Tl only.  test 2kg sample produced. Under purification now 150 Nd even better !  SILVA group (SACLAY, France) was contacted. 150 Nd enrichment is possible!  Q  = 3367 keV. Concern about 208 Tl only  Large phasespace. 2  tale only 1.6 bigger then for 82 Se  NME & G  much better then for 82 Se

SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Conclusion NEMO 3 is continuing to take data no  signal so far. 100 Mo: T 1/2 >5.8∙10 23 y ; m < eV * 82 Se: T 1/2 >2.1∙10 23 y ; m < eV * * F. Simkovic et al., Phys. Rev. C 60 (1999) ; S.Stoica and H. Klapdor- Kleingrothaus, Nucl. Phys. A 694 (2001) 269; O. Civatarese and J. Suhonen, Nucl. Phys. A 729 (2003) 867 a number of  results to be published soon SuperNEMO R&D is in progress. 3 year program funded in UK and France.

WE ARE IN THE MIDDLE OF THE ROAD

EXIT THAT COULD LEAD BEYOND SM thank you for your attention!