Max-Planck-Institut für Astronomie Heidelberg PACS SVR 22./23. June 2006 MPE Garching J. Stegmaier, U. Grözinger, D. Lemke, O. Krause, H. Dannerbauer,

Slides:



Advertisements
Similar presentations
PACS IIDR, Noordwijk 1-2 Mar 2001 Chopper R. Hofferbert D. Lemke, U. Grözinger, O. Krause, U. Klaas J. Katzer (ZEISS) Max-Planck-Institut für Astronomie,
Advertisements

COMPTON POLARIMETRY Analysis status Scaling laws 3 GeV Toward 850 MeV.
For the Collaboration GWDAW 2005 Status of inspiral search in C6 and C7 Virgo data Frédérique MARION.
HgCdTe Avalanche Photodiode Arrays for Wavefront Sensing and Interferometry Applications Ian Baker* and Gert Finger** *SELEX Sensors and Airborne Systems.
1 Annealing studies of Mimosa19 & radiation hardness studies of Mimosa26 Dennis Doering* 1, Samir Amar-Youcef 1,3,Michael Deveaux 1, Melissa Domachowski.
IAP-PAI 25/05/20051 CMS Si Rad. Hardness Introduction Damage in Si Neutron tests => Beam => Irrad. Setup.
PACS IIDR 01/02 Mar 2001 Photoconductor Detector Arrays1 Photoconductor Detector Arrays for PAC S IIDR - ESTEC Stefan Kraft ANTEC-GmbH Germany Günter.
Radiation Damage to Silicon Sensors DCC 11/14/02 DRAFT.
Random Telegraph Signal (RTS) in CMOS Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline Reminder: The operation principle of.
Radiation & Photometry AS4100 Astrofisika Pengamatan Prodi Astronomi 2007/2008 B. Dermawan.
Semiconductor Photoconductive Detectors S W McKnight and C A DiMarzio.
PACS IHDR, Garching 12/13 Nov 2003 Chopper R. Hofferbert D. Lemke, U. Grözinger, O. Krause, A. Böhm, A. Bohm (Hardware) R. Vavrek, U. Klaas (ICC) J. Katzer,
Slide 1 Diamonds in Flash Steve Schnetzer Rd42 Collaboration Meeting May 14.
Can people meet from 2:40 to 3:30 on Tuesday, September 5?
Radiation Detection and Measurement II IRAD 2731.
Principle of operation and limits of application
Chapter 4 Photonic Sources.
0. To first order, the instrument is working very well ! 1.Evolution of the IR detector with time 2.Stability of the L channel 3.Saturation 4.Linearity.
Rate and Gain Measurements of the 1-m long GEM detector Aiwu Zhang EIC tracking R&D weekly meeting.
References Hans Kuzmany : Solid State Spectroscopy (Springer) Chap 5 S.M. Sze: Physics of semiconductor devices (Wiley) Chap 13 PHOTODETECTORS Detection.
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
Background Issues: Real Time Radiation Measurement S.M.Yang EPC.IHEP Mini-Workshop on BEPCII Background Study March 2008 Institute of High Energy.
NEEP 541 Radiation Interactions Fall 2003 Jake Blanchard.
Evaluation of Silicon Photomultiplier Arrays for the GlueX Barrel Calorimeter Carl Zorn Radiation Detector & Medical Imaging Group Jefferson Laboratory,
Introduction to Optical Detectors: Plates, PMTs and CCDs Matt A. Wood Florida Institute of Technology Dept of Physics and Space Sciences.
FM-ILT Results: Mechanisms FM1 Chopper and Calibration Sources Markus Nielbock (MPIA) Babar Ali (IPAC) Jeroen Bouwman (MPIA) Helmut Dannerbauer (MPIA)
Herschel Space ObservatoryPACS Science Verification ReviewMPE 22/23 June 2006 GJ / MPE 1 PACS Test Facility Capabilities – Cryogenics and OGSE Gerd Jakob.
PACS SVR 22/23 June 2006 PACS FPU Subunits1 FM FPU Subunits A. Poglitsch.
PACS SVR-II 18 January 2007 FM ILT overview1 The PACS FM ILT Phase I overview on actual test execution and analysis Eckhard Sturm MPE.
Photodetection EDIT Internal photoelectric effect in Si Band gap (T=300K) = 1.12 eV (~1100 nm) More than 1 photoelectron can be created by light in silicon.
References Hans Kuzmany : Solid State Spectroscopy (Springer) Chap 5 S.M. Sze Physics of semiconductor devices (Wiley) Chap 13 PHOTODETECTORS.
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
PACS SVR 22/23 June 2006 Instrument Performance Prediction1 PACS Instrument Model and Performance Prediction A. Poglitsch.
I n s t i t u t e of H i g h E n e r g y P h y s i c s И н с т и т у т Ф и з и к и В ы с о к и х Э н е р г и й Influence of cooling on the working parameters.
PACS IIDR ESTEC 01/02 March 2001 OGSE 1 PACS Instrument Intermediate Design Review (IIDR) Reinhard Katterloher OGSE.
PACS SVR: 22/23 June 2006 MPE - Ge:Ga Detector Array1/16 Ch. Hartinger / L. Barl Ge:Ga Detector Arrays.
Michael Unrau, Institut für Kernphysik Analyse von Bolometersignalen der EDELWEISS Dark Matter Suche EDELWEISS dark matter searchFull InterDigitized detector.
Silicon Detectors and DAQ principles for a physics experiment Masterclass 2011, 7-11 February 2011 Alessandro Scordo.
PACS SVR 2 18 Jan 2007 FM ILT: Spectrometer1 Spectrometer Performance H. Feuchtgruber, T. Müller, A. Poglitsch.
Study of neutrino oscillations with ANTARES J. Brunner.
Study of neutrino oscillations with ANTARES J. Brunner.
1 Stephen SchultzFiber Optics Fall 2005 Semiconductor Optical Detectors.
PVPhotFlux PACS Photometer photometric calibration MPIA PACS Commissioning and PV Phase Plan Review 21 st – 22 nd January 2009, MPE Garching Markus Nielbock.
PACS IIDR 01/02 Mar 2001 PACS Cryo Harness1 U.Grözinger, D.Lemke, R. Hofferbert Max-Planck-Institut für Astronomie Heidelberg Based on input data from.
NICMOS Calibration Challenges in the Ultra Deep Field Rodger Thompson Steward Observatory University of Arizona.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
CEA DSM Dapnia SAp Flux calibration of the Photometer Koryo Okumura, Marc Sauvage, Nicolas Billot, Bertrand Morin DSM/DAPNIA/Sap.
PACS IIDR ESTEC 01/02 March 2001 Integration and Testing1 PACS Instrument Intermediate Design Review (IIDR) Reinhard Katterloher Integration and Testing.
1 P.Rebecchi (CERN) “Monitoring of radiation damage of PbWO 4 crystals under strong Cs 137  irradiation in GIF-ECAL” “Advanced Technology and Particle.
LHC Beam Loss Monitors, B.Dehning 1/15 LHC Beam loss Monitors Loss monitor specifications Radiation tolerant Electronics Ionisation chamber development.
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
Herschel EQM – Results and Lessons Learnt6/7 Feb 2006 PACS Overall Analysis1 Overall PACS EQM IMT Analysis Contributions by PACS ICC.
F Don Lincoln, Fermilab f Fermilab/Boeing Test Results for HiSTE-VI Don Lincoln Fermi National Accelerator Laboratory.
Calibration of uniformity between LYSO crystals Zhigang Wang Institute of High Energy Physics, CAS The Third International Workshop on the High.
An electron/positron energy monitor based on synchrotron radiation. I.Meshkov, T. Mamedov, E. Syresin, An electron/positron energy monitor based on synchrotron.
1 Performance of a CCD tracker at room temperature T. Tsukamoto (Saga Univ.) T. Kuniya, H. Watanabe (Saga Univ.); A. Miyamoto, Y. Sugimoto (KEK); S. Takahashi,
Study of Geiger Avalanche Photo Diode applications to pixel tracking detectors Barcelona Main Goal The use of std CMOS tech. APD's in Geiger mode (that.
Neutrinoless double beta decay (0  ) CdTe Semico nductor Band gap (eV) Electron mobility (cm 2 /V/s) Hole mobility (cm 2 /V/s) Density (g/cm 3.
Study of the Radiation Damage of Hamamatsu Silicon Photo Multipliers Wander Baldini Istituto Nazionale di Fisica Nucleare and Universita’ degli Studi di.
CEPC ScECAL Optimization for the 3th CEPC Physics Software Meeting
Electronics & Communication Engineering
“Semiconductor Physics”
Radiation hardness tests of GaAs and Si sensors at JINR S. M
High Operating Temperature Split-off Band IR Detectors
Development of the muon monitor for the T2K experiment
Persistence Experiment Preliminary Design Review
Detective Quantum Efficiency Preliminary Design Review
Basic Semiconductor Physics
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
Persistence Experiment Preliminary Design Review
Presentation transcript:

Max-Planck-Institut für Astronomie Heidelberg PACS SVR 22./23. June 2006 MPE Garching J. Stegmaier, U. Grözinger, D. Lemke, O. Krause, H. Dannerbauer, T. Henning, R. Hofferbert, U. Klaas, J. Schreiber Ge:Ga Detector Arrays PACS SVR phase 1, MPE Garching June 2006

PACS SVR, MPE Ge:Ga Detector Arrays Warm Functional Tests -Separate warm functional test on each module -Warm functional test after integration in MPIA test cryostat Cold Performance Tests -Cold functional test -Cold performance test -Variation of Detector-Bias, C int, t int -Using different -Filter combinations -BB-temperatures -Detector temperatures -Dark measurments FM-LS Tests MPIA Test Facility f-ratio as in PACS IR-flux attenuation: ~ 2.5 · 10 -6

PACS SVR, MPE Ge:Ga Detector Arrays FM LS-Sevenpacks FM-LS during integration into MPIA test cryostat FM module Warm functional test Cold performance test comments LS 1 2 hot pixels LS non-confirming modules (dummy channel) LS 2_2 1 open pixel LS non confirming module (output frame not stable, low V SS current) LS modules with weak pixels LS 5 1 module under higher stress LS 6 1 open (dummy) channel 2 modules under higher stress

PACS SVR, MPE Ge:Ga Detector Arrays FM LS-Sevenpacks FM module Warm functional test Cold performance test comments LS 1 2 hot pixels LS non confirming modules (dummy channel) LS 2_2 1 open pixel LS non confirming module (output frame not stable, low V SS current) LS modules with weak pixels LS 5 1 module under higher stress LS 6 1 open (dummy) channel 2 modules under higher stress channel #14 channel #7 FM 122 (LS 2_2) FM 115 (LS 1)

PACS SVR, MPE Ge:Ga Detector Arrays Responsivity NEP Responsivity / NEP Responsivity: 7.4 A/W ± 1.7 A/W NEP: 1.18 · A/W ± 4.6 · A/W U Bias = 200mV, T Det = 2.5K FM 126, FM 135, FM 136: higher stress (mounting screw of the test housing pressed the module)  modules OK LS 1LS 2_2LS 5LS 6

PACS SVR, MPE Ge:Ga Detector Arrays Responsivity - Homogenity LS 1 (FM 120, 118, 115, 114, 110, 108, 107)LS 2_2 (FM 122, 115, 121, 116, 113, 112, 111) LS 5 (FM 132, 131, 123, 128, 126, 125, 119)LS 6 (FM 130, 137, 136, 135, 134, 133) Spiking pixel FM 115 ch. #14 FM 122 ch. #7 open Spiking pixel FM 114 ch. #4 U Bias = 200mV, T Det = 2.5K, C int = 240 pF higher stress on FM 126 higher stress on FM 135 and FM 136

PACS SVR, MPE Ge:Ga Detector Arrays Responsivity - Bias Scan LS 1 (FM 120, 118, 115, 114, 110, 108, 107)LS 2_2 (FM 122, 115, 121, 116, 113, 112, 111) LS 5 (FM 132, 131, 123, 128, 126, 125, 119)LS 6 (FM 130, 137, 136, 135, 134, 133) w/o spiking and open pixels T Det = 2.5K FM 126 (LS 5), FM 135 (LS 6), FM 136 (LS 6): higher stress caused by mounting in the test housing

PACS SVR, MPE Ge:Ga Detector Arrays NEP - Bias Scan LS 1 (FM 120, 118, 115, 114, 110, 108, 107)LS 2_2 (FM 122, 115, 121, 116, 113, 112, 111) LS 5 (FM 132, 131, 123, 128, 126, 125, 119)LS 6 (FM 130, 137, 136, 135, 134, 133) T Det = 2.5K w/o spiking and open pixels FM 126 (LS 5), FM 135 (LS 6), FM 136 (LS 6): higher stress caused by mounting in the test housing

PACS SVR, MPE Ge:Ga Detector Arrays Dark Current [e - /s] U Bias = 200mV, T Det = 2.5K LS1 LS 5 Mean: 3550 e - /s ± 600 e - /s Requirements: CD ≤ 5*10 4 e - /s

PACS SVR, MPE Ge:Ga Detector Arrays Higher stress on 3 FMs  smaller band gap LS 5 LS Band gap [meV] Band Gap FM 120, Ch 2 (LS 1) photon flux on detector Thermal excitation: I dark ~ exp (-E/kT Det )

PACS SVR, MPE Ge:Ga Detector Arrays Goal: High absolute photometric accuracy in the FIR during „ quiet “ periods (~ 1%) Essential: - Stable operation of Ge:Ga-detectors in PACS at L2 - Optimize operating conditions: U Bias, T Det - Minimize curing and calibration frequency Radiation Environment at L2: - Galactic CR particles (low level fluxes: 3-5 ions/cm²/s; typical energy: 500 MeV – few GeV) - Solar particles events (avg. sol max: 2.5 · 10 5 ions/cm²/s; E p ≈ 100 MeV, E ions ≈ GeV range) Radiation damage in extrinsic photoconductors - Generation of electron hole pairs in bulk of detector - Capture of minority carriers by compensating impurities Effects on Detector Performance: - Spikes / glitches - Higher detector noise, dark current, detector output  change of calibration - Lower S/N Ionizing Radiation and Curing No stable operation of Ge:Ga detectors

PACS SVR, MPE Ge:Ga Detector Arrays Ionizing Radiation Tests Conditions –Simulated PACS operation conditions –Realistic FIR background: W/pix –Low stressed Ge:Ga detector array –~48 hours each –Every 1 to 10 min a measurement Without irradiation (preparatory test) –Performance of detector and the test setup –Analysis of systematic effects  Measurments highly reproducible with stability < 1% 137 Cs detector irradiation –L2 radiation environment: 137 Cs source (E γ = MeV) –Hit rate (> 3 σ ): ~16/s/pix Long term measurments with 137 Cs Generic charge ramp Radioactive 137 Cs source

PACS SVR, MPE Ge:Ga Detector Arrays Deglitching Method Glitch detection & deglitching: -sigma clipping applied to pairwise differences (values >3 σ ) Skewed distributions: -Robust estimator, e.g., Hodge-Lehmann estimator: μ = median (X i +X j )/2 with 1 ≤ i ≤ j ≤ n Glitches  skewed distribution

PACS SVR, MPE Ge:Ga Detector Arrays NEP and Responsivity Glitch rate: Start irradiation: 9 ± 1 hits/s/pix plateau: 16 ± 2 hits/s/pix Plateau: Accuracy: 4.5 % # > 3σ : 6% 5h U Bias = 160mV, T Det = 2.5K

PACS SVR, MPE Ge:Ga Detector Arrays Bias Scan T Det = 2.5K Under Irradiation: Operating Ge:Ga detectors at U bias < 160mV

PACS SVR, MPE Ge:Ga Detector Arrays Ionizing Radiation Tests Preliminary Results: Measurements w/o irradiation are highly reproducible 137 Cs allows simulations of radiation environment at L2 Effective technique for CR rejection: Sigma clipping with robust estimator (e.g., HL) So far: -Operating Ge:Ga detectors at a lower bias voltage < 160mV -Long term knowledge of  better 5% -Good curing by IR flash (~ W/pixel)

PACS SVR, MPE Ge:Ga Detector Arrays Backup slides

PACS SVR, MPE Ge:Ga Detector Arrays Curing by IR flash IR flash ~ W/pixel, 30 s U Bias = 160mV, T Det = 2.5K

PACS SVR, MPE Ge:Ga Detector Arrays Simulation of a Solar Flare Event high γ flux, 1min hit rate > 3σ: 56/pix/s U Bias = 160mV, T Det = 2.5K