R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002 DEPFET sensors for a LC vertex detector (1) »DEP(leted)F(ield)E(ffect)T(ransistor) operation.

Slides:



Advertisements
Similar presentations
MICROWAVE FET Microwave FET : operates in the microwave frequencies
Advertisements

of Single-Type-Column 3D silicon detectors
Radiation damage in silicon sensors
January US LC Workshop SLAC – Chris Damerell 1 Strategies for pickup and noise suppression with different vertex detector technologies Chris Damerell.
6.1 Transistor Operation 6.2 The Junction FET
2nd Open Meeting of the SuperKEKB Collaboration, KEK, March 2009 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Sensor R&D and Prototyping - Status -
Kailua-Kona, Marcel Trimpl, Bonn University Readout Concept for Future Pixel Detectors based on Current Mode Signal Processing Marcel Trimpl.
Metal Oxide Semiconductor Field Effect Transistors
SiPM Interconnections to 3D electronics Jelena Ninkovic Max-Planck-Institute for Physics, Munich, Germany SiMPs basics Why do we need 3D interconnections.
SOGANG UNIVERSITY SOGANG UNIVERSITY. SEMICONDUCTOR DEVICE LAB. Power MOSFETs SD Lab. SOGANG Univ. Doohyung Cho.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
CHARGE COUPLING TRUE CDS PIXEL PROCESSING True CDS CMOS pixel noise data 2.8 e- CMOS photon transfer.
Snowmass 2005 SOI detector R&D Massimo Caccia, Antonio Bulgheroni Univ. dell’Insubria / INFN Milano (Italy) M. Jastrzab, M. Koziel, W. Kucewicz, H. Niemiec.
Solid State Detectors-2
1D or 2D array of photosensors can record optical images projected onto it by lens system. Individual photosensor in an imaging array is called pixel.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Fabrication of Active Matrix (STEM) Detectors
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
MPI Halbleiterlabor  Otto-Hahn-Ring 6  München  The Halbleiterlabor is in the unique position to have a highly flexible production.
1 Monolithic Pixel Sensor in SOI Technology - First Test Results H. Niemiec, M. Koziel, T. Klatka, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor University.
Silicon – On - Insulator (SOI). SOI is a very attractive technology for large volume integrated circuit production and is particularly good for low –
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
P. Lechner IWORID 2002 Peter Lechner MPI Halbleiterlabor & PNSensor GmbH 1 X-ray imaging spectrometers in present and future satellite missions.
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
R. H. Richter - WHI Project Review Dec, 17th 2002 WHI - Project Review Halbleiterlabor (HLL) - Projects at HLL Overview (list of main projects)
MIT Lincoln Laboratory NU Status-1 JAB 11/20/2015 Advanced Photodiode Development 7 April, 2000 James A. Burns ll.mit.edu.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  MAPS technology decoupled charge sensing and signal transfer (improved radiation.
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 3, slide 1 Introduction to Electronic Circuit Design.
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
Update on Simulation and Sensor procurement for CLICPix prototypes Mathieu Benoit.
NMOS FABRICATION 1. Processing is carried out on a thin wafer cut from a single crystal of silicon of high purity into which the required p-impurities.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich 11th RD50 Workshop CERN Nov Thin planar pixel detectors for highest radiation levels.
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
Prague, Marcel Trimpl, Bonn University DEPFET-Readout Concept for TESLA based on Current Mode Signal Processing Markus Schumacher on behalf.
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
MPI Semiconductor Laboratory, The XEUS Instrument Working Group, PNSensor The X-ray Evolving-Universe Spectroscopy (XEUS) mission is under study by the.
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
Infinipix DEPFETs (for the ATHENA project) Seeon, May 2014 Alexander Bähr MPE 1 Alexander Bähr Max-Planck-Institute f. extraterrestr. Physics.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Jelena Ninković Testing PXD6 - summary and plans Jelena Ninkovic for the HLL team.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Government Engineering College Bharuch Metal Oxide Semiconductor Field Effect Transistors{MOSFET} Prepared by- RAHISH PATEL PIYUSH KUMAR SINGH
Testsystems PXD6 - testing plans overview - by Jelena NINKOVIC Hybrid Boards for PXD6 - by Christian KOFFMANE Source measurements on DEPFET matrices using.
Testing PXD6 - testing plans
Fully Depleted Low Power CMOS Detectors
 Silicon Vertex Detector Upgrade for the Belle II Experiment
Thinning and Plans for SuperBelle
Characterization and modelling of signal dynamics in 3D-DDTC detectors
The DEPFET for the ILC Vertex Detector
The CSOI approach for integrated micro channels
DEPFET Active Pixel Sensors (for the ILC)
Chapter 1 & Chapter 3.
Thin Planar Sensors for Future High-Luminosity-LHC Upgrades
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
Presentation transcript:

R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET sensors for a LC vertex detector (1) »DEP(leted)F(ield)E(ffect)T(ransistor) operation principles »Results of pre-tests »DEPFET prototype run »Technology, simulation and design »Wafer thinning »Concept, first results »Summary L. Andricek a, P. Fischer b, K. Heinzinger a, P. Lechner a, G. Lutz a, I. Peric b, M. Reiche c, R.H. Richter a, G. Schaller a, M. Schnecke a, F. Schopper a, H. Soltau a, L. Strüder a, J. Treis a, M. Trimpl b, J. Ulrici b, N. Wermes b a MPI Halbleiterlabor Munich b Univ. of Bonn c MPI für Mikrostrukturphysik Halle, Germany

R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET-Prinziple FET integrated on high ohmic n-bulk Collection of electrons within the internal gate Modulation of the FET current by the signal charge! Radiation ~1  m ~300  m Advantages: Amplification of the charge at the position of collection => no transfer loss Full bulk sensitivity Non structured thin entrance window (backside) Very low input capacitance => very low noise

R. H. Richter et al - VERTEX 2002 Kailua-Kona, ENC = 4.8 +/- 0.1 e K Excellent noise values measured on single pixels

BioScope - imaging of tracer-marked bio-medical samples (P. Klein and W. Neeser) Noise: ca K Slow operation (old technology) Large arrays are impossible (JFET => V P variations) Large cell size

R. H. Richter et al - VERTEX 2002 Kailua-Kona, Rectangular DEPFET pixel detector MOS transistor instead of JFET A pixel size of ca. 20 x 20 µm² is achievable using 3µm minimum feature size.

R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET pixel matrix - Read filled cells of a row - Clear the internal gates of the row - Read empty cells Low power consumption Fast random access to specific array regions

R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET Technology Double poly / double aluminum process on high ohmic n - substrate along p-channel perpendicular to channel (with clear)

R. H. Richter et al - VERTEX 2002 Kailua-Kona, Self aligning Technology Positions of all essential implantations are determined not by masks but by polysilicon layers shallow channel implantation - mandatory for rectangular cells (lateral channel definition) - reduces parameter variations on the wafer

R. H. Richter et al - VERTEX 2002 Kailua-Kona, Technology – pre-tests Motivation oLow leakage current new technology oFirst MOS transistor parameters for the DEPFET and readout electronics design oProcess know how and design rules Pre-tests: Device test: Single poly, single Al, MOS technology on 300µm silicon + Numereous deposition, lithography and etching tests

R. H. Richter et al - VERTEX 2002 Kailua-Kona, Pretest results: Diode leakage currents Reference diodes Pre-test diodes I Bulk =100pA/cm 2

R. H. Richter et al - VERTEX 2002 Kailua-Kona, Linear MOS Transistors (self aligned technolgy) V GS = B =10V L=5µmL=7µm

R. H. Richter et al - VERTEX 2002 Kailua-Kona, Pixel prototype production (6“ wafer) for XEUS and LC (TESLA) Many test arrays - Circular and linear DEPFETS up to 128 x 128 pixels minimum pixel size about 30 x 30 µm² - variety of special test structures Aim: Select design options for an optimized array operation (no charge loss, high gain, low noise, good clear operation) On base of these results => production of full size sensors Production will be finished in spring

purpose detector format pixel size thickness noise readout time / detector / row particle tracking 1.3 x 10 cm² (x 8) 520 x 4000 pixels (x 8) 2.1 Mpix (x8) 25 µm 50 µm ~ 100 el. ENC 50 µsec 20 nsec imaging spectroscopy 7.68 x 7.68 cm² 1024 x 1024 pixels 1 Mpix 75 µm µm 4 el. ENC 1.2 msec 2.5 µsec

Active Pixel Sensor (rectangular) 2 pixels 30 x 30 µm² DEPFET L = 5 µm W = 18 µm  reduce the required read out speed by 2 doubles the number of read out channels

R. H. Richter et al - VERTEX 2002 Kailua-Kona, Potential during collection - 3D Poisson equation (Poseidon) (50µm thick Si, N B =10 13 cm -3,V Back =-20V) Potential during collection - 3D Poisson equation (Poseidon) (50µm thick Si, N B =10 13 cm -3,V Back =-20V) Depth 10µm Depth 7µmDepth 4µmDepth 1µm Sources Drain External (internal) Gates n+ clear contacts Cell size 36 x 27 µm²

R. H. Richter et al - VERTEX 2002 Kailua-Kona, Hiding the n + -clear contacts Depth 1µm The positive Clear pulse removes the electrons from the Internal Gate and also pushs the holes out of the deep p cover region. After returning of the clear the deep p remains negatively charges forming a shield for the signal electrons.

R. H. Richter et al - VERTEX 2002 Kailua-Kona, Potential distribution during Reading Internal Gate Drain Source Back contact 2D dynamic simulation along the channel I D adjusted to 100µA (W/L =18µm/5µm) V internal Gate ca. 3V Localized charge generation simulates a hit

DEPFET simulation – TeSCA (2D, time dependent) hit response to a generation of 1600 electron-hole pairs

TeSCA (2D, time dependent) Removal of 1600 electrons from the internal gate (V Clear =15V) Simulation of the Clear mechanism Poseidon (3D Poisson equ.) Includes 3D effects => V Clear =20V

R. H. Richter et al - VERTEX 2002 Kailua-Kona, Current production status Pixel array section – Design with clockable clear gate N-side view with two polysilicon layers and contact openings To do: - P-side processing - Metallization Drain Gate Clear gate Source 1 Pixel cell

R. H. Richter et al - VERTEX 2002 Kailua-Kona, Processing thin detectors - the Idea -

R. H. Richter et al - VERTEX 2002 Kailua-Kona, Detector thinning – first results Wafer bonding – MPI f. Festkörperstrukturphysik, Halle Wafer grinding – SICO GmbH, Jena Anisotropic etching – CiS gGmbH Erfurt, MPI Halbleiterlabor Munich Thickness of detector region : 50µm of frame : 350µm Size: 8cm x 1cm

R. H. Richter et al - VERTEX 2002 Kailua-Kona, Summary oDEPFET is promising detector candidate for future HE and astrophysics experiments. Key features: low noise, full bulk sensitivity, no charge transfer loss, low power consumption, random access within an array oA new DEPFET technology (2 poly/ 2 aluminum) was developed for large arrays and high speed operation oA DEPFET Prototype production has been started with DEPFET arrays with 30 x 30 µm² pixel size (TESLA) to 75 x 75 µm² XEUS - Technology and device simulations are looking encouraging - Technological pre-tests show very good electrical parameters (leakage currents and MOS transistor characteristics) oA concept for merging the DEPFET technology with a thinning technology is proposed - thin mechanical detector samples were fabricated oFirst wafers will be finished in spring ‘03

R. H. Richter et al - VERTEX 2002 Kailua-Kona, Processing thin detectors - Wafer bonding - 10 “ SOI” Wafer prepared by MPI für Microstrukturphysik, Halle picture from: Q.-Y. Tong and U. Gösele “ Semiconductor Wafer Bonding ” John Wiley & Sons, Inc. ≈1 cm/sec