Combinatorial Algorithms and Optimization in Computational Biology and Bioinformatics Dan Gusfield occbio, June 30, 2006.

Slides:



Advertisements
Similar presentations
A New Recombination Lower Bound and The Minimum Perfect Phylogenetic Forest Problem Yufeng Wu and Dan Gusfield UC Davis COCOON07 July 16, 2007.
Advertisements

Efficient Computation of Close Upper and Lower Bounds on the Minimum Number of Recombinations in Biological Sequence Evolution Yun S. Song, Yufeng Wu,
Inferring Local Tree Topologies for SNP Sequences Under Recombination in a Population Yufeng Wu Dept. of Computer Science and Engineering University of.
An introduction to maximum parsimony and compatibility
Combinatorial Algorithms for Haplotype Inference Pure Parsimony Dan Gusfield.
Improved Algorithms for Inferring the Minimum Mosaic of a Set of Recombinants Yufeng Wu and Dan Gusfield UC Davis CPM 2007.
PHYLOGENETIC TREES Bulent Moller CSE March 2004.
Reconstructing Ancestral Recombination Graphs - or Phylogenetic Networks with Recombination Dan Gusfield UC Davis Different parts of this work are joint.
June 2, Combinatorial methods in Bioinformatics: the haplotyping problem Paola Bonizzoni DISCo Università di Milano-Bicocca.
June 2, Combinatorial methods in Bioinformatics: the haplotyping problem Paola Bonizzoni DISCo Università di Milano-Bicocca.
Combinatorial Optimization in Computational Biology Dan Gusfield Computer Science, UC Davis.
1 A Linear-Time Algorithm for the Perfect Phylogeny Haplotyping (PPH) Problem Zhihong Ding, Vladimir Filkov, Dan Gusfield Department of Computer Science.
D. Gusfield, V. Bansal (Recomb 2005) A Fundamental Decomposition Theory for Phylogenetic Networks and Incompatible Characters.
Inference of Complex Genealogical Histories In Populations and Application in Mapping Complex Traits Yufeng Wu Dept. of Computer Science and Engineering.
Graphs and Graph Theory in Computational Biology Dan Gusfield Miami University, May 15, 2008 (four hour tutorial)
Computing close bounds on the minimum number of recombinations Dan Gusfield UCD Y. Song, Y. F. Wu, D. Gusfield (ISMB2005) D. Gusfield, D. Hickerson (Dis.
WABI 2005 Algorithms for Imperfect Phylogeny Haplotyping (IPPH) with a Single Homoplasy or Recombnation Event Yun S. Song, Yufeng Wu and Dan Gusfield University.
Multi-State Perfect Phylogeny with Missing and Removable Data: Solutions via Chordal Graph Theory Dan Gusfield Recomb09, May 2009.
Association Mapping of Complex Diseases with Ancestral Recombination Graphs: Models and Efficient Algorithms Yufeng Wu UC Davis RECOMB 2007.
Algorithms to Distinguish the Role of Gene-Conversion from Single-Crossover recombination in populations Y. Song, Z. Ding, D. Gusfield, C. Langley, Y.
Computational Problems in Perfect Phylogeny Haplotyping: Xor-Genotypes and Tag SNPs Tamar Barzuza 1 Jacques S. Beckmann 2,3 Ron Shamir 4 Itsik Pe’er 5.
L6: Haplotype phasing. Genotypes and Haplotypes Each individual has two “copies” of each chromosome. Each individual has two “copies” of each chromosome.
Haplotyping via Perfect Phylogeny Conceptual Framework and Efficient (almost linear-time) Solutions Dan Gusfield U.C. Davis RECOMB 02, April 2002.
CSB Efficient Computation of Minimum Recombination With Genotypes (Not Haplotypes) Yufeng Wu and Dan Gusfield University of California, Davis.
Haplotyping via Perfect Phylogeny: A Direct Approach
ReCombinatorics: Phylogenetic Networks with Recombination CPM, June 18, 2008 Pisa, Italy Two recent results and Two Open Questions.
Combinatorial Approaches to Haplotype Inference Dan Gusfield CS, UC Davis.
Inferring Evolutionary History with Network Models in Population Genomics: Challenges and Progress Yufeng Wu Dept. of Computer Science and Engineering.
Fast Computation of the Exact Hybridization Number of Two Phylogenetic Trees Yufeng Wu and Jiayin Wang Department of Computer Science and Engineering University.
Integer Programming for Phylogenetic and Population- Genetic Problems with Complex Data D. Gusfield, Y. Frid, D. Brown Cocoon’07, July 16, 2007.
Multi-State Perfect Phylogeny via Chordal Graph Theory Dan Gusfield UC Davis December 7, UCLA.
Evaluation of the Haplotype Motif Model using the Principle of Minimum Description Srinath Sridhar, Kedar Dhamdhere, Guy E. Blelloch, R. Ravi and Russell.
Optimal Phylogenetic Networks with Constrained and Unconstrained Recombination (The root-unknown case) Dan Gusfield UC Davis.
Estimating and Reconstructing Recombination in Populations: Problems in Population Genomics Dan Gusfield UC Davis Different parts of this work are joint.
Haplotyping via Perfect Phylogeny - Model, Algorithms, Empirical studies Dan Gusfield, Ren Hua Chung U.C. Davis Cocoon 2003.
L5: Estimating Recombination Rates. Review  m M : min. number of recombination events in any explanation of the haplotypes in M  Last time, we covered.
Computing close bounds on the minimum number of recombinations Dan Gusfield UCD Y. Song, Y. F. Wu, D. Gusfield (ISMB2005) D. Gusfield, D. Hickerson (Dis.
Optimal Phylogenetic Networks with Constrained and Unconstrained Recombination Dan Gusfield UC Davis Different parts of this work are joint with Satish.
Phylogenetic Networks of SNPs with Constrained Recombination D. Gusfield, S. Eddhu, C. Langley.
Combinatorial Optimization and Combinatorial Structure in Computational Biology Dan Gusfield, Computer Science, UC Davis.
Algorithms for estimating and reconstructing recombination in populations Dan Gusfield UC Davis Different parts of this work are joint with Satish Eddhu,
RECOMB Satellite Workshop, 2007 Algorithms for Association Mapping of Complex Diseases With Ancestral Recombination Graphs Yufeng Wu UC Davis.
Combinatorial Optimization in Computational Biology: three topics that use Perfect Phylogeny Dan Gusfield OSB 2008, Lijiang, China, November 1, 2008.
A Linear-Time Algorithm for the Perfect Phylogeny Haplotyping (PPH) Problem Zhihong Ding, Vladimir Filkov, Dan Gusfield RECOMB 2005, pp. 585–600 Date:
Giuseppe Lancia University of Udine The phasing of heterozygous traits: Algorithms and Complexity.
Haplotype Blocks An Overview A. Polanski Department of Statistics Rice University.
Linear Reduction for Haplotype Inference Alex Zelikovsky joint work with Jingwu He WABI 2004.
National Taiwan University Department of Computer Science and Information Engineering Haplotype Inference Yao-Ting Huang Kun-Mao Chao.
Estimating and Reconstructing Recombination in Populations: Problems in Population Genomics Dan Gusfield UC Davis Different parts of this work are joint.
National Taiwan University Department of Computer Science and Information Engineering Pattern Identification in a Haplotype Block * Kun-Mao Chao Department.
Ch.6 Phylogenetic Trees 2 Contents Phylogenetic Trees Character State Matrix Perfect Phylogeny Binary Character States Two Characters Distance Matrix.
1 Population Genetics Basics. 2 Terminology review Allele Locus Diploid SNP.
Estimating Recombination Rates. LRH selection test, and recombination Recall that LRH/EHH tests for selection by looking at frequencies of specific haplotypes.
Meiotic Recombination (single-crossover) PrefixSuffix  Recombination is one of the principal evolutionary forces responsible for shaping genetic variation.
Estimating Recombination Rates. Daly et al., 2001 Daly and others were looking at a 500kb region in 5q31 (Crohn disease region) 103 SNPs were genotyped.
National Taiwan University Department of Computer Science and Information Engineering An Approximation Algorithm for Haplotype Inference by Maximum Parsimony.
The Haplotype Blocks Problems Wu Ling-Yun
by d. gusfield v. bansal v. bafna y. song presented by vikas taliwal
Yufeng Wu and Dan Gusfield University of California, Davis
Algorithms for estimating and reconstructing recombination in populations Dan Gusfield UC Davis Different parts of this work are joint with Satish Eddhu,
Gonçalo Abecasis and Janis Wigginton University of Michigan, Ann Arbor
Algorithms for estimating and reconstructing recombination in populations Dan Gusfield UC Davis Different parts of this work are joint with Satish Eddhu,
Estimating Recombination Rates
ReCombinatorics The Algorithmics and Combinatorics of Phylogenetic Networks with Recombination Dan Gusfield U. Oregon , May 8, 2012.
Haplotype Inference Yao-Ting Huang Kun-Mao Chao.
Recombination, Phylogenies and Parsimony
Haplotype Inference Yao-Ting Huang Kun-Mao Chao.
Approximation Algorithms for the Selection of Robust Tag SNPs
Haplotype Inference Yao-Ting Huang Kun-Mao Chao.
Parsimony population haplotyping
Presentation transcript:

Combinatorial Algorithms and Optimization in Computational Biology and Bioinformatics Dan Gusfield occbio, June 30, 2006

Two “Post-HGP” Topics Two topics in Population Genomics SNP Haplotyping in populations Reconstructing a history of recombination These topics in Population Genomics illustrate current challenges in biology, and illustrate the use of combinatorial algorithms and mathematics in biology.

What is population genomics? The Human genome “sequence” is done. Now we want to sequence many individuals in a population to correlate similarities and differences in their sequences with genetic traits (e.g. disease or disease susceptibility). Presently, we can’t sequence large numbers of individuals, but we can sample the sequences at SNP sites.

SNP Data A SNP is a Single Nucleotide Polymorphism - a site in the genome where two different nucleotides appear with sufficient frequency in the population (say each with 5% frequency or more). SNP maps have been compiled with a density of about 1 site per SNP data is what is mostly collected in populations - it is much cheaper to collect than full sequence data, and focuses on variation in the population, which is what is of interest.

Haplotype Map Project: HAPMAP NIH lead project ($100M) to find common SNP haplotypes (“SNP sequences”) in the Human population. Association mapping: HAPMAP used to try to associate genetic-influenced diseases with specific SNP haplotypes, to either find causal haplotypes, or to find the region near causal mutations. The key to the logic of Association mapping is historical recombination in populations. Nature has done the experiments, now we try to make sense of the results.

Genotypes and Haplotypes Each individual has two “copies” of each chromosome. At each site, each chromosome has one of two alleles (states) denoted by 0 and 1 (motivated by SNPs) Two haplotypes per individual Genotype for the individual Merge the haplotypes

Haplotyping Problem Biological Problem: For disease association studies, haplotype data is more valuable than genotype data, but haplotype data is hard to collect. Genotype data is easy to collect. Computational Problem: Given a set of n genotypes, determine the original set of n haplotype pairs that generated the n genotypes. This is hopeless without a genetic model.

The Perfect Phylogeny Model for SNP sequences sites Ancestral sequence Extant sequences at the leaves Site mutations on edges The tree derives the set M: Only one mutation per site allowed.

Classic NASC: Arrange the sequences in a matrix. Then (with no duplicate columns), the sequences can be generated on a unique perfect phylogeny if and only if no two columns (sites) contain all four pairs: 0,0 and 0,1 and 1,0 and 1,1 This is the 4-Gamete Test When can a set of sequences be derived on a perfect phylogeny?

So, in the case of binary characters, if each pair of columns allows a tree, then the entire set of columns allows a tree. For M of dimension n by m, the existence of a perfect phylogeny for M can be tested in O(nm) time and a tree built in that time, if there is one. Gusfield, Networks 91 We will use the classic theorem in two more modern and more genetic applications.

The Perfect Phylogeny Model We assume that the evolution of extant haplotypes can be displayed on a rooted, directed tree, with the all-0 haplotype at the root, where each site changes from 0 to 1 on exactly one edge, and each extant haplotype is created by accumulating the changes on a path from the root to a leaf, where that haplotype is displayed. In other words, the extant haplotypes evolved along a perfect phylogeny with all-0 root. Justification: Haplotype Blocks, rare recombination, base problem whose solution to be modified to incorporate more biological complexity.

Perfect Phylogeny Haplotype (PPH) Given a set of genotypes S, find an explaining set of haplotypes that fits a perfect phylogeny. 12 a22 b02 c10 sites A haplotype pair explains a genotype if the merge of the haplotypes creates the genotype. Example: The merge of 0 1 and 1 0 explains 2 2. Genotype matrix S

The PPH Problem Given a set of genotypes, find an explaining set of haplotypes that fits a perfect phylogeny 12 a22 b02 c10 12 a10 a01 b00 b01 c10 c10

The Haplotype Phylogeny Problem Given a set of genotypes, find an explaining set of haplotypes that fits a perfect phylogeny 12 a22 b02 c10 12 a10 a01 b00 b01 c10 c10 1 c c a a b b

The Alternative Explanation 12 a22 b02 c10 12 a11 a00 b00 b01 c10 c10 No tree possible for this explanation

Efficient Solutions to the PPH problem - n genotypes, m sites Reduction to a graph realization problem (GPPH) - build on Bixby- Wagner or Fushishige solution to graph realization O(nm alpha(nm)) time. Gusfield, Recomb 02 Reduction to graph realization - build on Tutte’s graph realization method O(nm^2) time. Chung, Gusfield 03 Direct, from scratch combinatorial approach -O(nm^2) Bafna, Gusfield et al JCB 03 Berkeley (EHK) approach - specialize the Tutte solution to the PPH problem - O(nm^2) time. Linear-time solutions - Recomb 2005, and two other linear time solutions.

The Reduction Approach This is the original polynomial time method from Recomb 2002.

The case of the 1’s 1)For any row i in S, the set of 1 entries in row i specify the exact set of mutations on the path from the root to the least common ancestor of the two leaves labeled i, in every perfect phylogeny for S. 2)The order of those 1 entries on the path is also the same in every perfect phylogeny for S, and is easy to determine by “leaf counting”.

Leaf Counting a b c d In any column c, count two for each 1, and count one for each 2. The total is the number of leaves below mutation c, in every perfect phylogeny for S. So if we know the set of mutations on a path from the root, we know their order as well. S Count

Simple Conclusions Root The order is known for the red mutations together with the leftmost blue mutation i: Subtree for row i data 2424 sites 5

But what to do with the remaining blue entries (2’s) in a row?

More Simple Tools 3)For any row i in S, and any column c, if S(i,c) is 2, then in every perfect phylogeny for S, the path between the two leaves labeled i, must contain the edge with mutation c. Further, every mutation c on the path between the two i leaves must be from such a column c.

From Row Data to Tree Constraints Root i: Subtree for row i data 2424 sites 5 Edges 5, 6 and 7 must be on the blue path, and 5 is already known to follow 4, but we don’t where to put 6 and 7. i i

The Graph Theoretic Problem Given a genotype matrix S with n sites, and a red-blue subgraph for each row i, create a directed tree T where each integer from 1 to n labels exactly one edge, so that each subgraph is contained in T. ii

Powerfull Tool: Graph Realization Let Rn be the integers 1 to n, and let P be an unordered subset of Rn. P is called a path set. A tree T with n edges, where each is labeled with a unique integer of Rn, realizes P if there is a contiguous path in T labeled with the integers of P and no others. Given a family P1, P2, P3…Pk of path sets, tree T realizes the family if it realizes each Pi. The graph realization problem generalizes the consecutive ones problem, where T is a path.

Graph Realization Example P1: 1, 5, 8 P2: 2, 4 P3: 1, 2, 5, 6 P4: 3, 6, 8 P5: 1, 5, 6, 7 Realizing Tree T

Graph Realization Polynomial time (almost linear-time) algorithms exist for the graph realization problem – Whitney, Tutte, Cunningham, Edmonds, Bixby, Wagner, Gavril, Tamari, Fushishige, Lofgren 1930’s ’s Most of the literture on this problem is in the context of determining if a binary matroid is graphic. The algorithms are not simple; none implemented before 2002.

Reducing PPH to graph realization We solve any instance of the PPH problem by creating appropriate path sets, so that a solution to the resulting graph realization problem leads to a solution to the PPH problem instance. The key issue: How to encode the needed subgraph for each row, and glue them together at the root.

From Row Data to Tree Constraints Root i: Subtree for row i data 2424 sites 5 Edges 5, 6 and 7 must be on the blue path, and 5 is already known to follow 4. i i

Encoding a Red-Blue directed path P1: U, 2 P2: U, 2, 4 P3: 2, 4 P4: 2, 4, 5 P5: 4, U U is a glue edge used to glue together the directed paths from the different rows. forced In T

Now add a path set for the blues in row i. Root i: sites 5 i i P: 5, 6, 7

That’s the Reduction The resulting path-sets encode everything that is known about row i in the input. The family of path-sets are input to the graph- realization problem, and every solution to the that graph-realization problem specifies a solution to the PPH problem, and conversely. Whitney (1933?) characterized the set of all solutions to graph realization (based on the three-connected components of a graph) and Tarjan et al showed how to find these in linear time.

Combinatorial Algorithms for estimating and reconstructing recombination in populations Dan Gusfield UC Davis Different parts of this work are joint with Satish Eddhu, Charles Langley, Dean Hickerson, Yun Song, Yufeng Wu, Z. Ding OCCBIO June 29, 2006

A richer model added Pair 4, 5 fails the four gamete-test. The sites 4, 5 ``conflict”. Real sequence histories often involve recombination. M

The first 4 sites come from P (Prefix) and the sites from 5 onward come from S (Suffix). P S Sequence Recombination A recombination of P and S at recombination point 5. Single crossover recombination

Network with Recombination new The previous tree with one recombination event now derives all the sequences. 5 P S M

A Phylogenetic Network or ARG S p P S 1 4 a:00010 b:10010 c: d:10100 e: f:01101 g:

a: b: d: c: e: f: g: A tree-like network for the same sequences generated by the prior network. 2 4 p s p s

Recombination Cycles In a Phylogenetic Network, with a recombination node x, if we trace two paths backwards from x, then the paths will eventually meet. The cycle specified by those two paths is called a ``recombination cycle”.

Galled-Trees A phylogenetic network where no recombination cycles share an edge is called a galled tree. A cycle in a galled-tree is called a gall. Question: if M cannot be generated on a true tree, can it be generated on a galled- tree?

Results about galled-trees Theorem: Efficient (provably polynomial-time) algorithm to determine whether or not any sequence set M can be derived on a galled-tree. Theorem: A galled-tree (if one exists) produced by the algorithm minimizes the number of recombinations used over all possible phylogenetic-networks. Theorem: If M can be derived on a galled tree, then the Galled-Tree is ``nearly unique”. This is important for biological conclusions derived from the galled-tree. Papers from

Elaboration on Near Uniqueness Theorem: The number of arrangements (permutations) of the sites on any gall is at most three, and this happens only if the gall has two sites. If the gall has more than two sites, then the number of arrangements is at most two. If the gall has four or more sites, with at least two sites on each side of the recombination point (not the side of the gall) then the arrangement is forced and unique. Theorem: All other features of the galled-trees for M are invariant.

A whiff of the ideas behind the results

Incompatible Sites A pair of sites (columns) of M that fail the 4-gametes test are said to be incompatible. A site that is not in such a pair is compatible.

abcdefgabcdefg Two nodes are connected iff the pair of sites are incompatible, i.e, fail the 4-gamete test. Incompatibility Graph G(M) M THE MAIN TOOL: We represent the pairwise incompatibilities in a incompatibility graph.

The connected components of G(M) are very informative Theorem: The number of non-trivial connected components is a lower-bound on the number of recombinations needed in any network. Theorem: When M can be derived on a galled- tree, all the incompatible sites in a gall must come from a single connected component C, and that gall must contain all the sites from C. Compatible sites need not be inside any blob. In a galled-tree the number of recombinations is exactly the number of connected components in G(M), and hence is minimum over all possible phylogenetic networks for M.

a: b: d: c: e: f: g: p s p s Incompatibility Graph

Efficient Algorithm The connected components of the conflict graph are the key to efficiently determining if the sequences can be derived on a galled- tree, and to construct one if possible.

Coming full circle - back to genotypes When can a set of genotypes be explained by a set of haplotypes that derived on a galled-tree, rather than on a perfect phylogeny? Recently, we developed an Integer Linear Programming solution to this problem, and are now testing the practical efficiency of it. (Brown, Gusfield 2006).

Papers and Software on wwwcsif.cs.ucdavis.edu/~gusfield