Isotropy of Hubble Diagrams by Bastian Weinhorst Bielefeld, 11.05.2006 in collaboration with Dominik J. Schwarz.

Slides:



Advertisements
Similar presentations
Quantum Field Theory for Gravity and Dark Energy Sang Pyo Kim Kunsan Nat’l Univ. & APCTP Co sPA2009, U. Melbourne, 2009.
Advertisements

Dark Energy. Conclusions from Hubble’s Law The universe is expanding Space itself is expanding Galaxies are held together by gravity on “small” distance.
Current Observational Constraints on Dark Energy Chicago, December 2001 Wendy Freedman Carnegie Observatories, Pasadena CA.
Observational Constraints on Sudden Future Singularity Models Hoda Ghodsi – Supervisor: Dr Martin Hendry Glasgow University, UK Grassmannian Conference.
Observational tests of an inhomogeneous cosmology by Christoph Saulder in collaboration with Steffen Mieske & Werner Zeilinger.
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Daniel Schmidt, Liberty University
Marek Kowalski Moriond Cosmology The “Union” Supernova Ia Compilation and new Cosmological Constraints Marek Kowalski Humboldt Universität.
Eric Y. Hsiao University of Victoria.  less dust extinction  low redshift  standard candles in JHK bands  independent measure of Hubble constant 
Modern Cosmology: The History of the History of the Universe Alex Drlica-Wagner SASS June 24, 2009.
Curvature Perturbations from a Non-minimally Coupled Vector Boson Field Mindaugas Karčiauskas work done with Konstantinos Dimopoulos Mindaugas Karčiauskas.
José Beltrán and A. L. Maroto Dpto. Física teórica I, Universidad Complutense de Madrid XXXI Reunión Bienal de Física Granada, 11 de Septiembre de 2007.
Cosmology Overview David Spergel. Lecture Outline  THEME: Observations suggest that the simplest cosmological model, a homogenuous flat universe describes.
PRE-SUSY Karlsruhe July 2007 Rocky Kolb The University of Chicago Cosmology 101 Rocky I : The Universe Observed Rocky II :Dark Matter Rocky III :Dark Energy.
שיעור 11 מבוא לקוסמולוגיה. Observational facts Density contrast at small scales.
Measuring the local Universe with peculiar velocities of Type Ia Supernovae MPI, August 2006 Troels Haugbølle Institute for Physics.
COSMOLOGY International Meeting of Fundamental Physics
Patricio Vielva Astrophysics Department (IFCA, Santander) Currently Astrophysics Group (Cavendish Lab., Cambridge) Wiaux, Vielva, Martínez-González.
Lecture 1: Basics of dark energy Shinji Tsujikawa (Tokyo University of Science) ``Welcome to the dark side of the world.”
University of Århus lunch talk, May 11, 2007 Large angle CMB anomalies and local structures Syksy Räsänen CERN Syksy Räsänen CERN.
Science of the Dark Energy Survey Josh Frieman Fermilab and the University of Chicago Astronomy Lecture 1, Oct
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
A Cosmology Independent Calibration of Gamma-Ray Burst Luminosity Relations and the Hubble Diagram Nan Liang Collaborators: Wei-Ke Xiao, Yuan Liu, Shuang-Nan.
COMING HOME Michael S. Turner Kavli Institute for Cosmological Physics The University of Chicago.
Dark Energy and the Inflection Points of Cosmic Expansion in Standard and Brane Cosmologies Daniel Schmidt, Liberty University Cyclotron Institute--Texas.
Glenn Starkman Dept. of Physics/CERCA/ISO Case Western Reserve University June 10-12, 2015 Princeton, NJ IAS Princeton, NJ Collaborators: C. Copi,
Cosmological Tests using Redshift Space Clustering in BOSS DR11 (Y. -S. Song, C. G. Sabiu, T. Okumura, M. Oh, E. V. Linder) following Cosmological Constraints.
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
L. Perivolaropoulos Department of Physics University of Ioannina Open page.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Adam G. Riess Johns Hopkins University and Space Telescope Science Institute The History of Cosmic Expansion from Supernovae Near and Far.
PREDRAG JOVANOVIĆ AND LUKA Č. POPOVIĆ ASTRONOMICAL OBSERVATORY BELGRADE, SERBIA Gravitational Lensing Statistics and Cosmology.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Supernova cosmology The quest to measure the equation of state of dark energy Bruno Leibundgut European Southern Observatory.
Bulk Flows, and Peculiar Velocities of Type Ia Supernovae Niels Bohr Summer Institute, August 2007 Troels Haugbølle Institute for Physics.
1 Determination of the equation of state of the universe using 0.1Hz Gravitational Wave Antenna Takashi Nakamura and Ryuichi Takahashi Dept. Phys. Kyoto.
Dipole of the Luminosity Distance: A Direct Measure of H(z) Camille Bonvin, Ruth Durrer, and Martin Kunz Wu Yukai
Hemispherical Power Asymmetry 郭宗宽 昆明 anomalies in CMB map the quadrupole-octopole alignment power deficit at low- l hemispherical asymmetry.
Scalar field quintessence by cosmic shear constraints from VIRMOS-Descart and CFHTLS and future prospects July 2006, Barcelona IRGAC 2006 In collaboration.
Type Ia Supernovae and the Acceleration of the Universe: Results from the ESSENCE Supernova Survey Kevin Krisciunas, 5 April 2008.
Cosmic Inhomogeneities and Accelerating Expansion Ho Le Tuan Anh National University of Singapore PAQFT Nov 2008.
Local Void vs Dark Energy Local Void vs Dark Energy Tirthabir Biswas IGC, Penn-State University with A Notari and R Mansouri, astro-ph/ with A Notari,
Extending the cosmic ladder to z~7 and beyond: using SNIa to calibrate GRB standard candels Speaker: Speaker: Shuang-Nan Zhang Collaborators: Nan Liang,
Astro-2: History of the Universe Lecture 10; May
Jochen Weller XLI Recontres de Moriond March, 18-25, 2006 Constraining Inverse Curvature Gravity with Supernovae O. Mena, J. Santiago and JW PRL, 96, ,
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
Uncorrelated bins, two-population Supernovae, and Modified Gravity Asantha Cooray STScI - Dark Energy, May 08 Dark energy: Devdeep Sarkar (UCI) Alex Amblard.
Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral Ep–Lp and.
Cosmology with Supernovae Bruno Leibundgut European Southern Observatory.
Dark Energy Phenomenology: Quintessence Potential Reconstruction Je-An Gu 顧哲安 National Center for Theoretical Sciences NTHU Collaborators.
Dark Energy Phenomenology: Quintessence Potential Reconstruction Je-An Gu 顧哲安 National Center for Theoretical Sciences CYCU Collaborators.
A New Route to the Hubble Constant (and Dark Energy) from HST Adam Riess (JHU, STScI) SHOES Collaboration.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Dark Energy: The Observational Challenge David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
Cosmology : a short introduction Mathieu Langer Institut d’Astrophysique Spatiale Université Paris-Sud XI Orsay, France Egyptian School on High Energy.
Cosmology Scale factor Cosmology à la Newton Cosmology à la Einstein
The Nature of Dark Energy David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
Detecting the CMB Polarization Ziang Yan. How do we know about the universe by studying CMB?
The HORIZON Quintessential Simulations A.Füzfa 1,2, J.-M. Alimi 2, V. Boucher 3, F. Roy 2 1 Chargé de recherches F.N.R.S., University of Namur, Belgium.
Is Cosmic Acceleration Slowing Down? Invisible Universe-UNESCO-Paris 29 th June-3 rd July 2009 Arman Shafieloo Theoretical Physics, University of Oxford.
Observational Constraints on the Running Vacuum Model
Fluctuations of the luminosity distance Copenhagen, December 16, 2005
Probing the Coupling between Dark Components of the Universe
Cosmology with Supernovae
The Cosmic Microwave Background and the WMAP satellite results
Modern cosmology 1: The Hubble Constant
CMBR Kinematic Dipole Anisotropy (~300 km/s velocity toward Leo); map of the temperature fluctuation relative to the MEAN (black body with T=2.728 Kelvin)
Local Void vs Dark Energy
Graduate Course: Cosmology
Kinematic Dipole Anisotropy from COBE
Presentation transcript:

Isotropy of Hubble Diagrams by Bastian Weinhorst Bielefeld, in collaboration with Dominik J. Schwarz

Motivation The cosmological principle states that the universe is homogeneous and isotropic on large scales – it is important to test this fundamental principle in every thinkable way The Hubble law is a direct consequence of the cosmological principle The need for Dark Energy and equivalently the value of q 0 relies on high-z and low-z SN data, mostly the latter will be tested upon anisotropies Large scale pertubations give rise to anisotropies in the Hubble diagram There are anomalies on the largest angular scales in the CMB Are there similiar anomalies in SN Ia data? (Copi, Huterer, Schwarz, Starkmann: astro-ph/ ) (Bonvin, Durrer, Gasparini: astro-ph/ ) Strategy: model independent tests (no Friedmann equations)

bin redshift Hubble Diagram The Hubble law to first order: Delta redshift z Data taken from: (Tonry et al.: astro-ph/ ) z in CMB frame (Barris et al.: astro-ph/ )

Analysing-Tools Normally one can fit H 0 by finding the minimum of the following  ² Additionally we added a dipole-term Minimizing gives a set of parameters for monopole and dipole in each bin

0.025<z h < <z h < <z h < <z h < Sn Ia Dipole = WMAP Dipole?  ² min /DOF=1.39  ² min /DOF=0.46  ² min /DOF=1.52  ² min /DOF=1.07 (Hinshaw et al.: astro-ph/ ) Contours ~ C.L. for dipol-directionColor ~ dipol-amplitude <z h <0.025 (heliocentric)

Color ~ dipole-amplitude Dipole-Fits in CMB rest frame 0.1<z< <z<2.0 Pointsize ~ |  |, Color ~ ,  ² min /DOF =1.22 Pointsize ~ |  |, Color ~ ,  ² min /DOF =0.68  ² min /DOF =0.68  ² min /DOF =1.22 Contours ~ C.L. for dipole-direction Pointsize~|  |, Color ~  0.1<z<0.4 Contours ~ C.L. for dipole-direction

The Hubble law to second order in redshift (for z<0.1): This gives Direction-dependent evidence for acceleration? Minimizing  ² gives values for H 0, q 0 and confidence intervals

Evidence for acceleration? l=90,b= -45,  ² min /DOF=0.91 l=0,b=90,  ² min /DOF=0.97 Sn with redshifts 0.0<z<0.1  ² min /DOF=0.99 l=0,b= -90,  ² min /DOF=0.98 l=270,b=45,  ² min /DOF=0.95 Isotropy of Hubble diagrams   N SENW S deceleration parameter Hubble constant

Conclusions We confirm the direction of the CMB-dipole with Sn Ia data We find additional dipoles for 0.7<z<2.0 and 0.1<z<0.4, which seem to be correlated to the unexpected quadrupole-octopole plane of the CMB We find hemispherical anisotropies in Hubble diagrams below z=0.1, i.e. no evidence for acceleration in the northern hemisphere Plan to repeat hemispherical analysis within  CDM

Thank you for your interest and attention

quadrupole+octopole WMAP3yr fullsky map (Copi, Huterer, Schwarz, Starkmann: astro-ph/ )