Физико-химическая структура областей образования массивных звезд И.И. Зинченко Институт прикладной физики РАН.

Slides:



Advertisements
Similar presentations
SUMMARY 1.Statistical equilibrium and radiative transfer in molecular (H 2 ) cloud – Derivation of physical parameters of molecular clouds 2.High-mass.
Advertisements

Proto-Planetary Disk and Planetary Formation
Star Formation Why is the sunset red? The stuff between the stars
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
Methanol maser polarization in W3(OH) Lisa Harvey-Smith Collaborators: Vlemmings, Cohen, Soria-Ruiz Joint Institute for VLBI in Europe.
Masers and Massive Star Formation Claire Chandler Overview: –Some fundamental questions in massive star formation –Clues from masers –Review of three regions:
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan,
1)Disks and high-mass star formation: existence and implications 2)The case of G : characteristics 3)Velocity field in G31.41: rotation or expansion?
Ammonia and CCS as diagnostic tools of low-mass protostars Ammonia and CCS as diagnostic tools of low-mass protostars Itziar de Gregorio-Monsalvo (ESO.
A MOPRA CS(1-0) demonstration survey of the Galactic plane G. Fuller, N. Peretto, L. Quinn (University of Manchester UK), J. Green (ATNF ) All dust continuum.
From Pre-stellar Cores to Proto-stars: The Initial Conditions of Star Formation PHILIPPE ANDRE DEREK WARD-THOMPSON MARY BARSONY Reported by Fang Xiong,
NRAO Socorro 05/2009 Radio Continuum Studies of Massive Protostars Peter Hofner New Mexico Tech & NRAO.
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
Outflow, infall, and rotation in high-mass star forming regions
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
Cambridge, June 13-16, 2005 A Study of Massive Proto- and Pre-stellar Candidates with the SEST Antenna Maite Beltrán Universitat de Barcelona J. Brand.
Leonardo Testi: (Sub)Millimeter Observations of Disks Around High-Mass Proto-Stars, SMA, Cambridge 14 Jun 2005 Disks around High-Mass (Proto-)Stars  From.
Star formation across the mass spectrum Our understanding of low-mass (solar type with masses between 0.1 and 10 M SUN ) star formation has improved greatly.
Formation of Massive Stars With great advances achieved in our understanding of low mass star formation, it is tempting to think of high mass star formation.
Centimeter and Millimeter Observations of Very Young Binary and Multiple Systems -Orbital Motions and Mass Determination -Truncated Protoplanetary Disks.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
Initial Conditions for Star Formation Neal J. Evans II.
Fate of comets This “Sun-grazing” comet was observed by the SOHO spacecraft a few hours before it passed just 50,000 km above the Sun's surface. The comet.
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
Lecture 14 Star formation. Insterstellar dust and gas Dust and gas is mostly found in galaxy disks, and blocks optical light.
Magnetic Fields Near the Young Stellar Object IRAS M. J Claussen (NRAO), A. P. Sarma (E. Kentucky Univ), H.A. Wootten (NRAO), K. B. Marvel (AAS),
The overall systematic trends in the kinematics of massive star forming regions Observations of HC 3 N* in hot cores Víctor M. Rivilla 41st Young European.
High-mass star forming regions: An ALMA view Riccardo Cesaroni INAF - Osservatorio Astrofisico di Arcetri.
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
Massive Star Formation: The Role of Disks Cassandra Fallscheer In collaboration with: Henrik Beuther, Eric Keto, Jürgen Sauter, TK Sridharan, Sebastian.
Great Barriers in High Mass Star Formation, Townsville, Australia, Sept 16, 2010 Patrick Koch Academia Sinica, Institute of Astronomy and Astrophysics.
Theories of Massive Star Formation Ian A. Bonnell University of St Andrews.
Studying Young Stellar Objects with the EVLA
Protostellar jets and outflows — what ALMA can achieve? — 平野 尚美 (Naomi Hirano) 中研院天文所 (ASIAA)
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Line emission by the first star formation Hiromi Mizusawa(Niigata University) Collaborators Ryoichi Nishi (Niigata University) Kazuyuki Omukai (NAOJ) Formation.
Masers Surveys with Mopra: Which is best 7 or 3 mm? Simon Ellingsen, Maxim Voronkov & Shari Breen 3 November 2008.
Star Formation Why is the sunset red? The stuff between the stars
 1987, Whistler: first time I met Malcolm  , post-doc at MPIfR: study of molecular gas in UC HII regions (NH 3, C 34 S, CH 3 CN) with 100m and.
Philamentary Structure and Velocity Gradients in the Orion A Cloud
Maite Beltrán Osservatorio Astrofisico di Arcetri The intringuing hot molecular core G
1)Observations: where do (massive) stars form? 2)Theory: how do (massive) stars form? 3)Search for disks in high-mass (proto)stars 4)Results: disks in.
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
Searching for massive pre-stellar cores through observations of N 2 H + and N 2 D + (F. Fontani 1, P. Caselli 2, A. Crapsi 3, R. Cesaroni 4, J. Brand 1.
Rotation Among High Mass Stars: A Link to the Star Formation Process? S. Wolff and S. Strom National Optical Astronomy Observatory.
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
1)The environment of star formation 2)Theory: low-mass versus high-mass stars 3)The birthplaces of high-mass stars 4)Evolutionary scheme for high-mass.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
The Evolution of Massive Dense Cores Gary Fuller Holly Thomas Nicolas Peretto University of Manchester.
NGC7538-IRS1: Polarized Dust & Molecular Outflow C. L. H. Hull (UC Berkeley), T. Pillai (Caltech), J.-H. Zhao (CfA), G. Sandell (SOFIA-USRA, NASA), M.
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
Outflows and Jets: Theory and Observations Winter term 2006/2007 Henrik Beuther & Christian Fendt Introduction & Overview (H.B. & C.F.) Definitions,
The Structures on Sub-Jeans Scales, Fragmentation, and the Chemical Properties in Two Extremely Dense Orion Cores Zhiyuan Ren, Di Li (NAOC) and Nicolas.
Stellar Birth Dr. Bill Pezzaglia Astrophysics: Stellar Evolution 1 Updated: 10/02/2006.
Sternentstehung - Star Formation Sommersemester 2006 Henrik Beuther & Thomas Henning 24.4 Today: Introduction & Overview 1.5 Public Holiday: Tag der Arbeit.
1 SIMBA survey of southern high-mass star forming regions Santiago Faúndez (U. de Chile) Leonardo Bronfman(U. de Chile) Guido Garay (U. de Chile) Rolf.
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
Possible evolutionary sequence for high-mass star formation
Osservatorio Astrofisico di Arcetri
Signposts of massive star formation
MASER Microwave Amplification by Stimulated Emission of Radiation
Probing of massive star formation with dense molecular lines
Chasing disks around massive stars with Malcolm
Presentation transcript:

Физико-химическая структура областей образования массивных звезд И.И. Зинченко Институт прикладной физики РАН

Problems I Difficult to form massive starsDifficult to form massive stars –Require high accretion rates ≥ M o / yr –Generally in dense cluster cores »Not much room for proto-massive star –Radiation pressure on dust grains »Reverses infall once M > M o »Sets (low) upper mass limit? Yorke 1993, Wolfire & Casinelli 1986Yorke 1993, Wolfire & Casinelli 1986 »Eddington limit ~ 100 M o Electron scatteringElectron scattering J. Bally Bonnell, 2005

Radiation pressure: Solutions Disc Accretion Yorke & Sonnhalter 2002Disc Accretion Yorke & Sonnhalter 2002 –Mass accretion through disc »Partially shielded –Stellar Radiation beamed away from disc »Due to rapid rotation High accretion > M o /yr McKee & Tan 2003High accretion > M o /yr McKee & Tan 2003 –Overwhelm radiation pressure –Need very dense initial conditions Rayleigh-Taylor Instabilities Krumholz et al 2005Rayleigh-Taylor Instabilities Krumholz et al 2005 –Locally increase accretion rate Bonnell, 2005

Radiation pressure: Solutions II Destroy dust in accretion flow Keto 2003Destroy dust in accretion flow Keto 2003 –Hyper-compact HII region –Dust destroyed (just) before radiation pressure imparts momentum Stellar Collisions Bonnell, Bate & Zinnecker 1998Stellar Collisions Bonnell, Bate & Zinnecker 1998 –Dense stellar cluster: n > 10 8 stars /pc 3 –Intermediate mass stars hit and merge »No problem with radiation pressure –Binaries: tidal capture –Ultra dense cluster due to accretion Bally & Zinnecker 2005 Bonnell, 2005

Star Formation - ИНАСАН Multi-line observations of selected objects: S mm

Star Formation - ИНАСАН Химическая дифференциация при образовании звезд малой массы Tafalla et al. 2002

Star Formation - ИНАСАН CS, N 2 H + и пыль G – типичный пример (звездочка – точечный источник IRAS). Распределения интенсивностей CS и пыли обычно очень похожи и отличаются от N 2 H +, в отличие от областей образования звезд малой массы.

Star Formation - ИНАСАН CS/dust and N 2 H + /dust ratios (G as an example) r is the projected distance from the CS/dust peak

Star Formation - ИНАСАН Возможная интерпретация  Эффекты насыщения линий Оптическая толща в линиях N 2 H + невелика, как следует из анализа сверхтонкой структуры, а в CS(5- 4) эти эффекты незаметны.Оптическая толща в линиях N 2 H + невелика, как следует из анализа сверхтонкой структуры, а в CS(5- 4) эти эффекты незаметны.  Эффекты возбуждения молекул ИК накачка для CS и N 2 H + может быть существенна на расстояниях r < 0.05 пк от звезды, что значительно меньше типичного размера областей, где наблюдаются данные эффекты.ИК накачка для CS и N 2 H + может быть существенна на расстояниях r < 0.05 пк от звезды, что значительно меньше типичного размера областей, где наблюдаются данные эффекты. Наблюдаемую величину вариаций невозможно объяснить только эффектами возбуждения.Наблюдаемую величину вариаций невозможно объяснить только эффектами возбуждения.  Вариации химического состава Наиболее приемлемое объяснение наблюдаемых вариаций интенсивности – это уменьшение содержания N 2 H + в центре.Наиболее приемлемое объяснение наблюдаемых вариаций интенсивности – это уменьшение содержания N 2 H + в центре.

Star Formation - ИНАСАН Temperatures from CH 3 CCH observations CH 3 CCH J = 6–5 transitions were observed in 2002 at Onsala towards “CS” and “N 2 H + ” peaks in several sources. J=13-12 transitions were observed in 2004 at IRAM 30m. An example of CH3CCH J = spectrum in S140

Star Formation - ИНАСАН SourcePeak T kin 6-5 T kin W3W3W3W3 “CS” 52.6 ± ± 1.5 “N 2 H + ” 30.7 ± ± 2.2 DR21(NH 3 ) “CS” 33.3 ± ± 1.4 “N 2 H + ” 28.8 ± ± 1.1 S140 “CS” 30.6 ± ± 1.0 “N 2 H + ” 27.8 ± ± 2.2 S255 “CS” 34.5 ± ± 0.9 “N 2 H + ” 34.9 ± ± 0.4 Only in W3 a significant temperature difference between the CS and N 2 H + peaks was found. However, in general the N 2 H + peaks are somewhat colder than the CS ones.

Star Formation - ИНАСАН Estimates of S255 parameters from CH 3 OH 2-1 and 5-4 series of transitions (S. Salii et al.) An example of LVG density estimates (in G ) based on CS J=5-4 and J=2-1 data. The yellow contours represent the CS(5-4) map.

Star Formation - ИНАСАН Accelerated collapse model Evolution of the ratio of CS to N 2 H + abundances during collapse. Once a critical number density of 10 5 cm -3 was achieved, three of the four runs shown incorporated a collapse accelerated by the factor shown (2, 3 or 4 times the free-fall velocity). The effect of an enhanced collapse rate should be that high gas densities would be achieved rapidly, before the effects of freeze-out dominate the chemistry. These densities would be reached before molecules that are important as N 2 H + removal agents (such as CO) are significantly depleted in the gas phase. Then N 2 H + abundances should be reduced in such circumstances, while the higher gas density promotes gas phase chemistry producing, in particular, CS. Lintott et al. 2005

Star Formation - ИНАСАН Диссоциативная рекомбинация N 2 H + Geppert et al Вероятно, эта реакция может приводить к уменьшению содержания N 2 H + в областях повышенной ионизации.

Star Formation - ИНАСАН Пример: S76E The 2MASS Ks image with the 0.87 mm continuum map (contours) overlaid. The positions of IRAS, MSX and 2MASS-IRS1 are indicated by a plus, an asterisk and a cross signs, respectively, while the triangles mark the three water masers observed by Migenes et al

Star Formation - ИНАСАН Large scale distribution of molecular gas: CO CO(1-0) mosaic map and spectra at different positions. (29´,-15´)

Star Formation - ИНАСАН Large scale distribution of molecular gas: C 18 O Left: C 18 O(2-1) maps in 1 km/s velocity bins (the central velocity is indicated in the upper left corner). Right: C 18 O (1-0) and (2-1) spectra.

Star Formation - ИНАСАН Large scale distribution of molecular gas: other molecules In CS, SO, HCO +, NH 3 and N 2 H + the emission at V LSR ~ km/s dominates, though a weak component at V LSR ~ 28 km/s can be seen in SO and NH 3. The main component peaks in CS, SO and NH 3 are displaced by 10˝-20˝ to SW or W from S76E nominal position and are rather compact (< 1´) while the emission peak of the secondary component is shifted by ~1.5-2´ to SW. CS(5-4) integrated intensity (grey- scale) as well as red- and blue- shifted parts of the spectrum.

Star Formation - ИНАСАН NMA results: CS J=2-1 and J=3-2

Star Formation - ИНАСАН

Star Formation - ИНАСАН

01/06/2015Star Formation - ИНАСАН  Massive and dense cores in different early evolutionary stages: Stage Observed signatures Comments mm FIR radio early late Pre-UCHII    Large scale infall motions HMPO    Accretion + jet + bipolar outflow Warm    Embedded luminous energy source; T ~ 32 K; UCHII phase Cold    No internal luminous energy source; T < 15 K Garay, 2005

Star Formation - ИНАСАН Basic physical properties of HMSF cores On the basis of the CS survey and ammonia observations the basic physical properties of the cores have been derived and their statistical distributions have been constructed.  The average size is ~ 1 pc.  The average temperature is ~ K.  The mean densities are ~ 10 4 cm -3 which is much lower than densities derived from excitation analysis.  The slope of the mass spectrum is ~  The velocity dispersion is highly supersonic.  The IR luminosity to mass ratio peaks at ~ 10 (in solar units).  The cores are close to gravitational equilibrium. Zinchenko, Pirogov & Toriseva 1998

01/06/2015Star Formation - ИНАСАН Fontani et al. (2002) sample of 12 Clumps

Star Formation - ИНАСАН Radial density profiles from dust continuum Results for 2D power law function and gaussian beam convolution fit to the observational data. The mean power law index is ~ 1.0 for cores with IRAS sources and ~0.6 for cores without IRAS sources. This implies the power law index for radial density dependence ~1.6 (assuming the index for the radial temperature dependence of 0.4).

01/06/2015Star Formation - ИНАСАН n H 2  R -2.6 ClumpHMC Fontani et al. (2002)

Star Formation - ИНАСАН

Star Formation - ИНАСАН Temperature distributions from IRAM CH 3 CCH(13-12) data

Star Formation - ИНАСАН Sourceγβ S (04)0.42(06) S76E0.26(03)0.36(05) DR210.25(04)0.35(06) W30.27(08)0.38(12) S (02)0.32(03)

Star Formation - ИНАСАН Radial dependence of velocity dispersion The enhancement of line widths in the central regions cannot be explained by optical depth effects alone. A plausible explanation could be found in a higher degree of dynamical activity of gas in central regions of HMSF cores, including differential rotation, infall motions and turbulence due to winds and outflows from massive stars.

Star Formation - ИНАСАН Velocity gradients There is a correlation between direction angle of total velocity gradient and elongation angle. The average ratio of rotational to gravitational energy is ~ Therefore, rotation does not play a significant role in core dynamics.

Star Formation - ИНАСАН Радиальные движения  Некоторые особенности профилей линий могут указывать на наличие систематических радиальных движений в облаке.

Star Formation - ИНАСАН Massive protostars? Maps of W3 area in the N 2 H + and HCO + lines. HCO + lines frequently show signs of infall motions.

01/06/2015Star Formation - ИНАСАН Example: IRAS Garay et al. (2002) 8 μm MSX 1.2 mm emission SIMBA Massive IR-dark cloud Isolated massive dense cores: Ideal places to investigate the process of massive star formation 1 pc  Few appear as isolated structures ~10 % M ~ 2x10 3 M ๏  Most within large molecular clouds (GMCs) ~90 % Where are massive dense cores found?

Egan et al G IRDCs = compact objects seen against the bright mid-infrared emission from the Galactic plane. dark between 7 and 100  m ~2000 clouds in a 1  180  scan along the Galactic equator Menten, 2005

Star Formation - ИНАСАН Наблюдения молекул в темных ИК облаках

Star Formation - ИНАСАН Statistics of high velocity outflows in HMSF regions Questions:  Frequency of occurrence (important for understanding the formation mechanism of high mass stars)  Basic physical properties in dependence on IR luminosity

Star Formation - ИНАСАН Indeed, around the BN/KL region there is the well known outflow with an age of about 1000 years. It is possible that the outflow and the ejection of BN and I were result of the same phenomenon. Energy in outflow is of order 4X10 47 ergs, perhaps produced by formation of close binary or merger. H 2 image with NH 3 contours (Shuping et al. 2004; Wilson et al. 2000) Luis F. Rodríguez, 2005

Star Formation - ИНАСАН Identification of high-velocity outflows SO C 18 O residual C 18 O The outflow detection rate is ≥ 40 %

Star Formation - ИНАСАН Outflow properties  There are good correlations between mass, momentum and kinetic energy on the one hand and IR luminosity on the other hand.  From the comparison with mass loss rate, “force” and “mechanical luminosity” the average “dynamical age” is ~ 10 4 years. The scatter in this age is small.

Star Formation - ИНАСАН

(Beuther et al. 2002) Outflow Energetics PfPf. L bol M f vs L bol correlation appears to be upper limit M f is a function of the entrainment efficiency.. MfMf. L acc L ZAMS L bol P f E f  L bol 0.6 for L bol = 0.3 to 10 5 L sun Similar correlations hold for mass accretion rate, ionized mass outflow rate, & core mass.  strong link between accretion & outflow for most L bol... MfMf F = L bol /c (Wu et al. 2004) e.g. Cabrit & Bertout 1992, Shepherd & Churchwell 1996, Anglada et al. 1996, Henning et al. 2000, Beuther et al. 2002, Wu et al Shepherd, 2005

Star Formation - ИНАСАН Correlations between core parameters from CS from N2H+ Garay, 2005

Star Formation - ИНАСАН Small scale clumpiness in HMSF cores Optical depth broadening of CS lines Search for “ripples” in line profiles

Star Formation - ИНАСАН Сверхтонкая структура линий, как индикатор фрагментарности Pirogov 1999

Possible Roles of Magnetic Fields formation of GMCs fragmentation to form cores support against collapse transport of angular momentum from central regions of cores, enabling star formation Crutcher, 2005

Mass to Magnetic Flux Ratios mass/flux ratio ( )  gravitational collapse /magnetic support Crutcher, 2005

Star Formation - ИНАСАН Galactic gradients of the physical properties of HMSF cores The mean density drops exponentially with R (the scale length is ~ 3 kpc)

Star Formation - ИНАСАН HCN and HCO + emission in the disk of M 31 “When investigating the variation with the galactic radius in the M 31 disk, we find that the I(HCN)/I(CO) and I(HCO + )/I(CO) ratios are higher in the inner arm than in the outer arm. This weak trend, if real, is not supposed to come from the abundance gradient but from excitation effects.” (Brouillet et al. 2005)

Star Formation - ИНАСАН Свойства плотных ядер в областях образования звезд большой и малой массы

01/06/2015Star Formation - ИНАСАН A possible scenario for high-mass SF Unstable clump: t ff =10 5 yr Clump n  R -2 M clump > M virial Cesaroni, 2005

01/06/2015Star Formation - ИНАСАН A possible scenario for high-mass SF Unstable clump: t ff =10 5 yr Inside-out collapse: dM accr /dt=M clump /t ff =10 -2 M O /yr infalling Clump n  R -3/2 n  R -2 Cesaroni, 2005

01/06/2015Star Formation - ИНАСАН A possible scenario for high-mass SF Unstable clump: t ff =10 5 yr Inside-out collapse: dM accr /dt=M clump /t ff =10 -2 M O /yr Rotation of core with rotation period=10 5 yr infalling Clump n  R -3/2 n  R -2 rotating Core Cesaroni, 2005

01/06/2015Star Formation - ИНАСАН A possible scenario for high-mass SF Unstable clump: t ff =10 5 yr Inside-out collapse: dM accr /dt=M clump /t ff =10 -2 M O /yr Rotation of core with rotation period=10 5 yr Fragmentation over R centrifugal =R HMC /5=0.01 pc infalling Clump n  R -3/2 n  R -2 rotating Core rotating disks Cesaroni, 2005

01/06/2015Star Formation - ИНАСАН A possible scenario for high-mass SF Unstable clump: t ff =10 5 yr Inside-out collapse: dM accr /dt=M clump /t ff =10 -2 M O /yr Rotation of core with rotation period=10 5 yr Fragmentation over R centrifugal =R HMC /5=0.01 pc Formation of HMC with 5 3 ∼ 100 stars (dM accr /dt) star = M O /yr /100 = = M O /yr over t SF =t ff =10 5 yr infalling Clump n  R -3/2 n  R -2 rotating HMC circumstellar disks Cesaroni, 2005

Star Formation - ИНАСАН Заключение  Химическая дифференциация молекул в областях образования массивных звезд радикально отличается от той, что имеет место в темных холодных облаках, где образуются звезды малой массы. Содержание молекул N 2 H + здесь уменьшается в центре облака, в направлении ИК источников. Причины этого пока не вполне понятны.  Радиальные профили плотности в сгустках, где образуются массивные звезды, соответствуют «стандартной» модели звездообразования.  Зависимость температуры от радиуса близка к ожидаемой для центрального источника нагрева в оптически тонкой среде.  Дисперсия скоростей газа либо постоянна, либо уменьшается от центра к краю облака.  Отношение энергии вращения к гравитационной мало.  В ряде случаев особенности профилей линий указывают на сжатие облаков.  Имеются признаки мелкомасштабной фрагментарности, которая, однако, не проявляется в виде «изрезанности» профилей линий.