עבוד אותות במערכת החושים סמסטר א' תשס"ט Cochlear Implant Auditory Evoked Response Binaural Hearing

Slides:



Advertisements
Similar presentations
SITE OF LESION TESTING:
Advertisements

Mr. McCormick A.P. Psychology
AUDITORY BRAINSTEM EVOKED RESPONSE (ABR)
Binaural Hearing Or now hear this! Upcoming Talk: Isabelle Peretz Musical & Non-musical Brains Nov. 12 noon + Lunch Rm 2068B South Building.
Auditory monitoring for preservation of the function of the auditory nerve Recording of auditory evoked potentials in operations in the posterior fossa.
June 02, 2009 Today ’ s Agenda – Warm up – Video 06/02: Min day 06/03: 06/04: CE Due 06/05: Return Books to Library 06/08: Unit Test Warm- up question:
Localizing Sounds. When we perceive a sound, we often simultaneously perceive the location of that sound. Even new born infants orient their eyes toward.
CSD 3103 anatomy of speech and hearing mechanisms Hearing mechanisms Fall 2008 Central Pathways.
cells in cochlear nucleus
M.Sc. in Medical Engineering
Neural mechanisms of sound localization How the brain calculates interaural time and intensity differences.
עבוד אותות במערכת החושים סמסטר א' תש"ע Lecture 13
עבוד אותות במערכת החושים סמסטר א' תשס"ח Lecture 9
Stochastic Properties of Neural Coincidence Detector cells Ram Krips and Miriam Furst.
עבוד אותות במערכת החושים סמסטר א' תשס"ז Cochlear Implant Binaural Hearing
עבוד אותות במערכת החושים סמסטר א' תש"ע Lecture 12
Spectral centroid 6 harmonics: f0 = 100Hz E.g. 1: Amplitudes: 6; 5.75; 4; 3.2; 2; 1 [(100*6)+(200*5.75)+(300*4)+(400*3.2)+(500*2 )+(600*1)] / = 265.6Hz.
Plasticity in sensory systems Jan Schnupp on the monocycle.
עבוד אותות במערכת החושים סמסטר א' תשס"ח הרצאה מס' 5 Neural Activity
Stem Cell Research on Hearing Loss By, Michael Lovrity.
Cochlear Implants By Di’Aundria Davis.
Properties and Detection of Sound
Alan Kan, Corey Stoelb, Matthew Goupell, Ruth Litovsky
1 Special Testing. 2 Site of Lesion Cochlear—sensory Nerve—neural (retrocochlear) Reliability vs. validity.
Hearing Impairment Hair cells are responsible for translating mechanical information into neural information. Thus, with damaged hair cells, the auditory.
Iona Ross BME 281 October 18,  More than 600 million people worldwide (10%) suffer from hearing impairments  250 million people worldwide have.
Ruth Litovsky University of Wisconsin Madison, WI USA Brain Plasticity and Development in Children and Adults with Cochlear Implants
Cochlear Implants American Sign Language Children & Cochlear Implants Psychological Evaluation of Implant Candidates James H. Johnson, Ph.D., ABPP Department.
Bastaninejad, Shahin, MD, ORL-HNS
Clinical Applications
How Psychologists Study the Brain
Auditory transduction Figure by MIT OCW. After figure in: Bear, Mark F., Barry W. Connors, and Michael A. Paradiso. Neuroscience: Exploring the Brain.
THE BIONIC EAR BME 181 SEMINAR Mihir Subash. WHAT IS THE BIONIC EAR?  A Bionic Ear, which is known as a cochlear implant, is an artificial hearing device,
Sounds in a reverberant room can interfere with the direct sound source. The normal hearing (NH) auditory system has a mechanism by which the echoes, or.
COCHLEAR IMPLANTS Brittany M. Alphonse Biomedical Engineering BME 181.
Central Auditory Pathway. Location of the auditory system in the skull.
Cochlear Implants By: Victor J. Gabbidon. Purpose A cochlear implant is a surgically implanted electronic device that provides a sense of hearing in the.
AEPs Ahmed Khater, MD, PhD Ass. Prof. of audio-vestibular medicine
AUDIOLOGY IN ORL DR. BANDAR MOHAMMED AL- QAHTANI, M.D KSMC.
Auditory Neuroscience 1 Spatial Hearing Systems Biology Doctoral Training Program Physiology course Prof. Jan Schnupp HowYourBrainWorks.net.
Amplification systems: Hearing aids May be analog or digital May be analog or digital Consists of a microphone, amplifier, and loudspeaker. Consists of.
Humans can hear sounds at frequencies from about 20Hz to 20,000Hz.
Development of Sound Localization 2 How do the neural mechanisms subserving sound localization develop?
$ studying barn owls in the laboratory $ sound intensity cues $ sound timing cues $ neural pathways for sound location $ auditory space $ interaural time.
Fletcher’s band-widening experiment (1940)
Implants – other types. City Lit Auditory brainstem implant (ABI)
SPATIAL HEARING Ability to locate the direction of a sound. Ability to locate the direction of a sound. Localization: In free field Localization: In free.
Fundamentals of Sensation and Perception
Auditory Evoked Potential (AEP)Testing
Artificial Cochlear Implants Geoff Norman 4/18/16
Sound Localization and Binaural Hearing
COCHLEAR IMPLANTS INSERVICE.  Middle Ear  Hammer  Anvil  Stapes How the ear works  Outer Ear  Inner Ear  Cochlea  Auditory Nerve.
Computer Architecture and Networks Lab. 컴퓨터 구조 및 네트워크 연구실 Auditory Brainstem Response : Differential Diagnosis(3/3) 윤준철.
Hearing tests.
Auditory Localization in Rooms: Acoustic Analysis and Behavior
PSYCHOACOUSTICS A branch of psychophysics
Petr Marsalek Prague, CZ, Charles University,
ABR measures Absolute latency Inter-peak latency Wave amplitudes
CLINICAL SIGNIFICANCE
Schematic depiction of how cochlear implant systems operate. 1
Cassidy Hinson ASL 1 Semester 2
Central Auditory Nervous System
Correlation between Binaural Perception and Brainstem Lesions
MEDS 371 Auditory system II: hindbrain Dr. Duck O. Kim.
Christine V. Portfors, Henrique von Gersdorff  Neuron 
Sound in the Ear Presentation
Ms. Saint-Paul A.P. Psychology
Vahe Poghosyan, Andreas A. Ioannides  Neuron 
3 primary cues for auditory localization: Interaural time difference (ITD) Interaural intensity difference Directional transfer function.
Presentation transcript:

עבוד אותות במערכת החושים סמסטר א' תשס"ט Cochlear Implant Auditory Evoked Response Binaural Hearing

Cochlear Implant

1. Sound Processor captures sound from the environment processes sound into digital information transmits to the implant over a transmitting antenna, or headpiece, held in place by magnets in both the headpiece and implant 2. Implant converts digital information into electrical signals sends signals down tiny wires to the electrode array in the inner ear delivers electrical signals through tiny contacts, or electrodes, to the hearing nerve the hearing nerve carries the sound information to the brain, where it is heard 3. Electrode Array

Auditory Pathway

Electrophysiology of the Human Auditory System

בדיקת ABR – Auditory Brainstem Responses מחברים אלקטרודות חיצוניות לתנוך האזן ולמצח הנבדק

בדיקת BERA מייצגת פעילות חשמלית בעצב השמיעה ובגזע המוח. התגובה היא רישום של מספר גלים אופייניים. גל I: פעילות עצב VIII גל II: גרעין קוכליארי גל III: Super Olive Complex. גל IV: lateral SOC גל V: Lateral leminiscus גל VI: תלמוס מה בודקים ? א. לטנטיות : השוואה ביחס לנורמות והשוואה בין שתי האוזניים של אותו נבדק ב. שינויים יחסיים בגובה הפיק

שימושים קליניים של בדיקת ABR? קביעת סף שמיעה אובייקטיבי. ניתן לקבוע גם בתינוקות בסיכון בדיקה בתינוק בסיכון

Localization = judgment of the direction and distance of a sound source Lateralization = the apparent location of the sound source within the head when headphones are used

Binaural Hearing: Interaural Differences We will conduct an experiment to measure the minimum ILD/ITD. t Left, L Left t Right, L Right

Masking Level Difference MLD=0 dB MLD=15 dB MLD=0 dB MLD=9dB

The Pina

Head Related Transfer Function

“”Cone of confusion בתוך הקונוס התלת ממדי ישנם צרופים שונים של מקומות שלהם יש אותו ITD ואותו ILD היוצרים אזור של קושי בהחלטה של מיקום הקול. תנועות הראש משנות את מיקום הקונוס ומקטינות את אזור חוסר הוודאות

Minimal Audible Angle - MAA מהו ההפרש הקטן ביותר בשינוי מיקום הקול המאפשר הבחנה בשינוי זה ? היכולת שלנו להבחין בהפרש במיקום מקור הקול היא טובה ביותר כשהקול מגיע מלפנים בחזית הראש. יכולת זו הולכת ופוחתת כשמקור הקול נמצא בצדי הראש או מאחור. שינויים קטנים בכיוון הקול מלפנים יוצרים הבדלים גדולים ב - ITD.

LATERALIZATION Perception Stimulus R L R R L L ILD ITD ITD=ILD=0

Histograms = number of times a subject reported perceiving a position when ITD or ILD presented Normal Performance

Center-OrientedSide --Oriented position ITD(msec) ILD(dB) Abnormal Performance

Patients’ Performance

Brainstem MRI Scans AxialCoronal Sagittal

Lesion Detection

Overlap of Auditory Pathway on MRI Scans

Auditory Pathway and Brainstem Outline Overlapped on fMRI Scans

Schematic Representation of the Brainstem Auditory Pathway

Correlation between MRI and Lateralization Normal Lateralization MS10 MS20 MS50 MS52 CVA23

Correlation between MRI and Lateralization Side-Oriented Lateralization

Correlation between MRI and Lateralization Center-Oriented Lateralization

Correlation between MRI and Lateralization

Experimental Summary and Conclusions Two types of abnormal lateralization performance were found : center-oriented and side-oriented. Both types of abnormalities were found in patients with either MS or Stroke Center-oriented lateralization is correlated with TB/SOC lesions Side-oriented lateralization is correlated with LL/IC lesions

fMRI Study with Binaural Stimulation Coronal cut (2/11) - MGBAxial cut (6/12) -SOC Axial cut (10/12) - LL Axial cut (2/12) - CN Coronal cut (6/11) - AC

Monaural & Binaural Activation in a Right Sagittal Section Left Ear Stimulation Right & Left Ears Stimulation Right Ear Stimulation

Monaural & Binaural Activation in a Left Sagittal Section Left ear stimulation Both ears stimulation Right ear stimulation

What Next?  Evaluate Behavioral Performances of Normal Subjects and Patients according to the statistical properties of the auditory pathway  Find Correlation Between fMRI and Behavioral Performances