The NuMoon experiment: first results Stijn Buitink for the NuMoon collaboration Radboud University Nijmegen 20 th Rencontres de Blois, 2008 May 19.

Slides:



Advertisements
Similar presentations
The National Science FoundationThe Kavli Foundation APS April 2008 Meeting - St. Louis, Missouri Results from Cosmic-Ray Experiments Vasiliki Pavlidou.
Advertisements

J. Alvarez-Muñiz, ARENA 2005 Simulations of radio emission from EM showers in different dense media E. Marqués R.A. Vázquez E. Zas Jaime Alvarez-Muñiz.
Recent History of Radio Searches for Ultra High Energy Neutrinos David Saltzberg University of California, Los Angeles SalSA meeting February 2, 2005 A.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
July 29, 2003; M.Chiba1 Study of salt neutrino detector for GZK neutrinos.
September 16-19, 2008 Hamburg 2008 Olaf Scholten For the NuMoon collaboration KVI, Groningen.
LUNASKA LUNASKA: Towards UHE Particle Astronomy with the Moon and Radio Telescopes Clancy W. James, University of Adelaide (Supervisors: R. Protheroe,
The Pierre Auger Observatory Nicolás G. Busca Fermilab-University of Chicago FNAL User’s Meeting, May 2006.
Radio detection of UHE neutrinos E. Zas, USC Leeds July 23 rd 2004.
Goldstone Lunar Neutrino Search Nov JPL: Peter Gorham, Kurt Liewer, Chuck Naudet UCLA: David Saltzberg, Dawn Williams (2001) Support: JPL DSN.
Tuning in to UHE Neutrinos in Antarctica – The ANITA Experiment J. T. Link P. Miočinović Univ. of Hawaii – Manoa Neutrino 2004, Paris, France ANITA-LITE.
Askaryan effect in salt: SLAC T460, June T460 rock-salt target 4lb high-purity synthetic rock-salt bricks (density=2.07) – 6 tons of it. + some.
Heino Falcke Radboud University, Nijmegen ASTRON, Dwingeloo
PERSPECTIVES OF THE RADIO ASTRONOMICAL DETECTION OF EXTREMELY HIGH ENERGY NEUTRINOS BOMBARDING THE MOON R.D. Dagkesamanskii 1), I.M. Zheleznykh 2) and.
Radio Detection of High Energy Cosmic Ray Air Showers A short review XX th RENCONTRES DE BLOIS 18th - 23rd May 2008 “Challenges in Particle Astrophysics”
July 10, 2007 Detection of Askaryan radio pulses produced by cores of air showers. Suruj Seunarine, Amir Javaid, David Seckel, Philip Wahrlich, John Clem.
The LOFAR Cosmic Ray KSP
RADAR Detection of Extensive Air Showers Nils Scharf III. Physikalisches Institut A Bad Honnef Nils Scharf III. Physikalisches Institut A Bad.
8-Jan-2008ASPERA R&D Lisbon AMvdB1 R&D for Radio Detection Ad M. van den Berg R&D and Astroparticle Physics meeting 8 January 2008.
Studies of the Energy Resolution of the ANITA Experiment Amy Connolly University of California, Los Angeles CALOR06 June 6 th, 2006.
Simulation Issues for Radio Detection in Ice and Salt Amy Connolly UCLA May 18 th, 2005.
ARIANNA: Searching for Extremely Energetic Neutrinos Lisa Gerhardt Lawrence Berkeley National Laboratory & University of California, Berkeley NSD Monday.
Next Generation neutrino detector in the South Pole Hagar Landsman, University of Wisconsin, Madison Askaryan Under-Ice Radio Array.
Future Directions Radio A skaryan U nder ice R adio A rray Hagar Landsman Science Advisory Committee meeting March 1 st, Madison.
Lunatics - those who search for lunar ticks Developments in Nanosecond Pulse Detection Methods & Technology UHE Neutrino Detection using the Lunar Cherenkov.
UCL Xmas 2006 : Dec 18 1 From the Tevatron to the Zevatron Mark Lancaster Simon Bevan, Amy Connolly, Ryan Nichol, Dave Waters.
Spencer Klein, LBNL & UC Berkeley n GZK Neutrinos n Radiodetection The moon as a cosmic target n ANITA – floating over Antarctica n Future experiments.
Mar 9, 2005 GZK Neutrinos Theory and Observation D. Seckel, Univ. of Delaware.
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
for the ARA collaboration,
ARENA2012, Erlangen June Lunar Space Missions for Ultrahigh- energy Cosmic Rays and Neutrinos Observation G. A. Gusev, V. A. Chechin, and V. A. Ryabov.
P.W. Gorham et al.. TEST BEAM A SLAC Time relative to beam entry Antenna V/V rms Time relative to beam entry Antenna V/V rms close to shower maximumshower.
Laboratory Particle- Astrophysics P. Sokolsky High Energy Astrophysics Institute, Univ. of Utah.
M.Chiba_ARENA20061 Measurement of Attenuation Length for Radio Wave in Natural Rock Salt and Performance of Detecting Ultra High- Energy Neutrinos M.Chiba,
The lunar Askaryan technique with the Square Kilometre Array Clancy James, Erlangen Centre for Astroparticle Physics (ECAP) 34th ICRC, The Hague, Netherlands.
RICE David Seckel, NeSS02, Washington DC, Sept ,/2002 R adio I ce C herenkov E xperiment PI presenter.
ARENA-2005 THE UPPER LIMIT TO THE EHE NEUTRINO FLUX FROM OBSERVATIONS OF THE MOON WITH KALYAZIN RADIO TELESCOPE. A.R.Beresnyak, R.D.Dagkesamanskiy, A.V.Kovalenko.
Study of high energy cosmic rays by different components of back scattered radiation generated in the lunar regolith N. N. Kalmykov 1, A. A. Konstantinov.
Sept. 2010CRIS, Catania Olaf Scholten KVI, Groningen Physics Radio pulse results plans.
Simulation of a hybrid optical, radio, and acoustic neutrino detector Justin Vandenbroucke with D. Besson, S. Boeser, R. Nahnhauer, P. B. Price IceCube.
Neutrinos and Z-bursts Dmitry Semikoz UCLA (Los Angeles) & INR (Moscow)
Shih-Hao Wang 王士豪 Graduate Institute of Astrophysics & Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University 1 This.
RICE: ICRC 2001, Aug 13, Recent Results from RICE Analysis of August 2000 Data See also: HE228: Ice Properties (contribution) HE241: Shower Simulation.
What we do know about cosmic rays at energies above eV? A.A.Petrukhin Contents 4 th Round Table, December , Introduction. 2. How these.
Studies of Askaryan Effect, 1 of 18 Status and Outlook of Experimental Studies of Askaryan RF Radiation Predrag Miocinovic (U. Hawaii) David Saltzberg.
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
NEVOD-DECOR experiment: results and future A.A.Petrukhin for Russian-Italian Collaboration Contents MSU, May 16, New method of EAS investigations.
Olivier Deligny for the Pierre Auger Collaboration IPN Orsay – CNRS/IN2P3 TAUP 2007, Sendai Limit to the diffuse flux of UHE ν at EeV energies from the.
Jeong, Yu Seon Yonsei University Neutrino and Cosmic Ray Signals from the Moon Jeong, Reno and Sarcevic, Astroparticle Physics 35 (2012) 383.
June 18-20, 2009 Detection of Askaryan radio pulses produced by cores of air showers. Suruj Seunarine, David Seckel, Pat Stengel, Amir Javaid, Shahid Hussain.
The Lunar Cherenkov Technique: Answering the Unanswered Questions Clancy W James Radboud University Nijmegen Presented at ARENA, Nantes, 2010 LUNASKA NuMoon.
Near-Field Effects of Cherenkov Radiation Induced by Ultra High Energy Cosmic Neutrinos Chih‐Ching Chen Collaboration with Chia-Yu Hu and Pisin Chen LeCosPA.
Detecting Ultra High Energy Neutrinos with LOFAR M.Mevius for the LOFAR NuMoon and CR collaboration.
Shih-Hao Wang 王士豪 Graduate Institute of Astrophysics & Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University 1 This.
Bergische Universität Wuppertal Jan Auffenberg et al. Rome, Arena ARENA 2008 A radio air shower detector to extend IceCube ● Three component air.
LUNASKA UHE Neutrino Flux Limits - From Parkes Onwards The Lunar Cherenkov Technique – From Parkes Onwards R. Protheroe R. Crocker C. James D. Jones R.
Lunar Radio Cerenkov Observations of UHE Neutrinos
Detecting UHE cosmic-rays and neutrinos hitting the Moon
LUNASKA The Directional Dependence of the Lunar Cherenkov Technique in Regards to UHE Neutrino Detection -C.W. James (University of Adelaide) IF we want.
Flux Limits for Ultra-High Energy Neutrinos
Discussion session: other (crazy
Harm Schoorlemmer, for the Pierre Auger Collaboration H. Schoorlemmer
Topics The case for remote radio detection of neutrinos
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
Andreas Horneffer for the LOFAR Cosmic Ray KSP
Cosmic ray and Neutrino Physics
Pierre Auger Observatory Present and Future
David Saltzberg (UCLA)
Trigger Strategy for LOPESSTAR
for the Detection of UHE Cosmic Rays and Neutrinos
Presentation transcript:

The NuMoon experiment: first results Stijn Buitink for the NuMoon collaboration Radboud University Nijmegen 20 th Rencontres de Blois, 2008 May 19

The Cosmic Ray Spectrum What is the origin? Acceleration sites? Top down models? Search for sources  highest energies F(E) [ m 2 sr s GeV ] -1 E [eV ] ← 32 orders of magnitude  ← 12 orders of magnitude  ← 1 [m -2 s -1 ] 1 [km -2 y -1 ] E -2.7 

Propagation of cosmic rays Cronin 2004

GZK Cutoff The GZK Energy The GZK Distance

Search for UHE CRs and neutrino’s Pierre Auger Observatory 3000 km 2 IceCube ~1 km 3 Flux above eV: 1 /km 2 /sr/century

Cosmic ray 100MHz Radio waves Detection: Westerbork antennas Principle of the measurement 10 7 km 2

Askaryan effect: Coherent Cherenkov emission Leading cloud of electrons, v  c Typical size of order 10cm Coherent Čerenkov for ν  2-5 GHz cos θ c =1/n, θ c =56 o for ∞ shower length Length of shower, L  few m Important for angular spreading ~10 cm ~2 m Cosmic ray shower Wave front

Neutrino’s vs. CRs CR convert all energy into hadronic shower Neutrino: 20% of energy into electromagnetic shower CR interacts close to surface Neutrino can penetrate deeply

Surface roughness James & Protheroe 2008 Small scale roughness `scatters’ radiation Large scale roughness disfavours CR detection

Spreading around Čerenkov-cone Lunar regolith: n ≈ 1.8 GHz Scholten et al GHz

Reflection Spreading is diminishing internal reflection 3 GHz100 MHz

Position on Moon Partial Detection probability Normalized distance from center Calculations for E cr = eV Detection treshold: 500 Jy for 20 MHz bandwidth With decreasing ν : - increasing area - increasing probability ∫ over surface Moon D  ν -3 Scholten et al. 2006

Goldstone Lunar UHE Neutrino Search (GLUE) P. Gorham et al., PRL 93, (2004) Two antennas at JPL’s Goldstone, Calif. Tracking 2.2 GHz Detection off the Moon First experiment: 12 hrs using single Parkes 64m dish in Australia: T. Hankins et al., MNRAS 283, 1027 (1996)

James & Protheroe, 2008

NuMoon WSRT Use Westerbork radio observatory Advantages: MHz band 25 m diameter dishes 5 degree field of view 12 coincident receivers 40 M samples/sec (PuMa2) Polarization information NuMoon coll.: O.Scholten, S.Buitink, H.Falcke, B.Stappers, K.Singh, R.Strom

Use Westerbork radio observatory 4 frequencies NuMoon WSRT

Processing Pipeline 18 TB raw time series data per 6 hr slot Removal of narrow-band radio interference (RFI) Dedispersion for ionosphere Peak search ~1% of data stored for offline processing

Simulated pulsedispersed in ionosphere (TEC = 10)

+ raw data =

Trigger: 4σ pulse in all four frequency bands + dedispersion

Trigger Power Spectrum Gaussian noise Effect successive steps in analysis

Prelimenary Results Analysis of 10 h 40 min data

Future: Lofar Lofar High Band antennas MHz 77 stations; 2x2 km core + outlying stations

Lofar neutrino sensitivity

Lofar UHE CR sensitivity

Lunaska Australia Telescope Compact Array Undergoing upgrade 2 GHz bandwidth; 5 antenna’s

SKA & Pathfinder (ASKAP) 100 MHz – 25 GHz Planar Aperture Arrays for lower frequency range Small dishes for higher frequency range SKA to be build in Australia or South Africa Pathfinder in Australia

Future sensitivity LOFAR James & Protheroe, 2008

Conclusions Radio detection of lunar showers promising technique for detection of highest energy particles WSRT sets competitive limits on UHE neutrino flux Future missions will provide constraints for TD models SKA will be sensitive to expected GZK flux

FORTE satellite (Fast On-orbit Recording of Transient Events) Main mission: synaptic lightning observation Viewed Greenland ice ( )  1.9 MILLION km 3  38 days Log-periodic antennas N. Lehtinen et al., PRD 69, (2004)

Askaryan effect: confirmation in sand Experiment at SLAC with beams of photons And e-/bunch: effective shower energies eV 1 Jy = W/m 2 /Hz Angular spread Z 0 ~ Δ c ~ λ /L=1/L ν D. Saltzberg et al PRL 86 (2001) 2802

Shower Length 3 simple models  EM (w/ LPM) Length ~ E 1/3 (Alvarez-Muniz & Zas) 1 km at eV  Hadronic Length ~ ln(E)  Hybrid Initially EM, but  --> hadrons  400 m at eV Purely EM Purely Hadronic Dotted - hybrid e Energy (eV) NOTE Δθ c ≈1/(ℓν )