Quantum phase transitions of correlated electrons and atoms Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002 Leon Balents (UCSB) Lorenz.

Slides:



Advertisements
Similar presentations
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Advertisements

Jinwu Ye Penn State University Outline of the talk: 1.Introduction to Boson Hubbard Model and supersolids on lattices 2.Boson -Vortex duality in boson.
Quantum Phase Transitions Subir Sachdev Talks online at
Quantum antiferromagnetism and superconductivity Subir Sachdev Talk online at
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Physical Review B 71, and (2005), cond-mat/
Subir Sachdev Quantum phase transitions of ultracold atoms Transparencies online at Quantum Phase Transitions Cambridge.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Quantum.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Competing orders in the cuprate superconductors.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
Quantum critical transport, duality, and M-theory hep-th/ Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh.
Insights into quantum matter from new experiments Detecting new many body states will require: Atomic scale resolution of magnetic fields Measuring and.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Talk online:
Putting Competing Orders in their Place near the Mott Transition Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton Burkov (UCSB) Predrag Nikolic (Yale)
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Strongly interacting cold atoms Subir Sachdev Talks online at
Quantum phase transitions cond-mat/ Quantum Phase Transitions Cambridge University Press.
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
The quantum mechanics of two dimensional superfluids Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz Bartosch.
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); cond-mat/ cond-mat/ Leon Balents.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Bosonic Mott Transitions on the Triangular Lattice Leon Balents Anton Burkov Roger Melko Arun Paramekanti Ashvin Vishwanath Dong-ning Sheng cond-mat/
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Equilibrium dynamics of entangled states near quantum critical points Talk online at Physical Review Letters 78, 843.
Unexpected Connections in Physics: From Superconductors to Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Stringing together the quantum phases of matter Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Talk online at Physical Review.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
A. S=1/2 fermions(Si:P, 2DEG) Metal-insulator transition Evolution of magnetism across transition. Phil. Trans. Roy. Soc. A 356, 173 (1998) (cond-mat/ )
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Quantum critical transport and AdS/CFT HARVARD Lars Fritz, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Mueller,
Subir Sachdev Superfluids and their vortices Talk online:
Deconfined quantum criticality T. Senthil (MIT) P. Ghaemi,P. Nikolic, M. Levin (MIT) M. Hermele (UCSB) O. Motrunich (KITP), A. Vishwanath (MIT) L. Balents,
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
The quantum phase transition between a superfluid and an insulator: applications to trapped ultracold atoms and the cuprate superconductors.
Quantum vortices and competing orders
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Science 303, 1490 (2004); cond-mat/ cond-mat/
Electrical and thermal transport near quantum phase transitions in condensed matter, and in dyonic black holes Sean Hartnoll (KITP) Pavel.
Experimental Evidences on Spin-Charge Separation
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); Physical Review B 70, (2004), 71,
Quantum phases and critical points of correlated metals
Quantum phase transitions and the Luttinger theorem.
The quantum mechanics of two dimensional superfluids
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Deconfined quantum criticality
Quantum phase transitions out of the heavy Fermi liquid
Presentation transcript:

Quantum phase transitions of correlated electrons and atoms Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton Burkov (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Toronto)

T Quantum-critical Why study quantum phase transitions ? g gcgc Theory for a quantum system with strong correlations: describe phases on either side of g c by expanding in deviation from the quantum critical point. Important property of ground state at g=g c : temporal and spatial scale invariance; characteristic energy scale at other values of g: Critical point is a novel state of matter without quasiparticle excitations Critical excitations control dynamics in the wide quantum-critical region at non-zero temperatures.

Outline I.The Quantum Ising chain II.The superfluid-Mott insulator quantum phase transition III.The cuprate superconductors Superfluids proximate to finite doping Mott insulators with VBS order ? IV.Vortices in the superfluid V.Vortices in superfluids near the superfluid-insulator quantum phase transition The “quantum order” of the superconducting state: evidence for vortex flavors

I. Quantum Ising Chain

2Jg

Full Hamiltonian leads to entangled states at g of order unity

LiHoF 4 Experimental realization

Weakly-coupled qubits Ground state: Lowest excited states: Coupling between qubits creates “flipped-spin” quasiparticle states at momentum p Entire spectrum can be constructed out of multi-quasiparticle states p

Three quasiparticle continuum Quasiparticle pole Structure holds to all orders in 1/g S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997) ~3  Weakly-coupled qubits

Ground states: Lowest excited states: domain walls Coupling between qubits creates new “domain- wall” quasiparticle states at momentum p p Strongly-coupled qubits

Two domain-wall continuum Structure holds to all orders in g S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997) ~2  Strongly-coupled qubits

Entangled states at g of order unity g gcgc “Flipped-spin” Quasiparticle weight Z A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, (1994) g gcgc Ferromagnetic moment N 0 P. Pfeuty Annals of Physics, 57, 79 (1970) g gcgc Excitation energy gap 

Critical coupling No quasiparticles --- dissipative critical continuum

Quasiclassical dynamics P. Pfeuty Annals of Physics, 57, 79 (1970) S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997).

II. The superfluid-Mott insulator quantum phase transition

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science 269, 198 (1995) Bose condensation Velocity distribution function of ultracold 87 Rb atoms

Apply a periodic potential (standing laser beams) to trapped ultracold bosons ( 87 Rb)

Momentum distribution function of bosons Bragg reflections of condensate at reciprocal lattice vectors M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Superfluid-insulator quantum phase transition at T=0 V 0 =0E r V 0 =7E r V 0 =10E r V 0 =13E r V 0 =14E r V 0 =16E r V 0 =20E r V 0 =3E r

Bosons at filling fraction f  M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Weak interactions: superfluidity Strong interactions: Mott insulator which preserves all lattice symmetries

Bosons at filling fraction f  Weak interactions: superfluidity

Bosons at filling fraction f  Weak interactions: superfluidity

Bosons at filling fraction f  Weak interactions: superfluidity

Bosons at filling fraction f  Weak interactions: superfluidity

Strong interactions: insulator Bosons at filling fraction f 

Bosons at filling fraction f  Weak interactions: superfluidity C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

Weak interactions: superfluidity C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Bosons at filling fraction f 

Weak interactions: superfluidity C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Bosons at filling fraction f 

Weak interactions: superfluidity C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Bosons at filling fraction f 

Weak interactions: superfluidity C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Bosons at filling fraction f 

Strong interactions: insulator C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Bosons at filling fraction f 

Strong interactions: insulator C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Bosons at filling fraction f 

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Insulating phases of bosons at filling fraction f  Charge density wave (CDW) order Valence bond solid (VBS) order

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Insulating phases of bosons at filling fraction f  Charge density wave (CDW) order Valence bond solid (VBS) order

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Insulating phases of bosons at filling fraction f  Charge density wave (CDW) order Valence bond solid (VBS) order

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Charge density wave (CDW) order Valence bond solid (VBS) order Insulating phases of bosons at filling fraction f 

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Insulating phases of bosons at filling fraction f  Charge density wave (CDW) order Valence bond solid (VBS) order

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Insulating phases of bosons at filling fraction f  Charge density wave (CDW) order Valence bond solid (VBS) order

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Insulating phases of bosons at filling fraction f  Charge density wave (CDW) order Valence bond solid (VBS) order

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Charge density wave (CDW) order Valence bond solid (VBS) order Insulating phases of bosons at filling fraction f 

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Charge density wave (CDW) order Valence bond solid (VBS) order Insulating phases of bosons at filling fraction f 

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Insulating phases of bosons at filling fraction f  Charge density wave (CDW) order Valence bond solid (VBS) order

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Insulating phases of bosons at filling fraction f  Charge density wave (CDW) order Valence bond solid (VBS) order

Superfluid-insulator transition of bosons at generic filling fraction f The transition is characterized by multiple distinct order parameters (boson condensate, VBS/CDW order) Traditional (Landau-Ginzburg-Wilson) view: Such a transition is first order, and there are no precursor fluctuations of the order of the insulator in the superfluid.

Superfluid-insulator transition of bosons at generic filling fraction f The transition is characterized by multiple distinct order parameters (boson condensate, VBS/CDW order) Traditional (Landau-Ginzburg-Wilson) view: Such a transition is first order, and there are no precursor fluctuations of the order of the insulator in the superfluid. Recent theories: Quantum interference effects can render such transitions second order, and the superfluid does contain precursor VBS/CDW fluctuations. N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).

III. The cuprate superconductors Superfluids proximate to finite doping Mott insulators with VBS order ?

Cu O La La 2 CuO 4

Mott insulator: square lattice antiferromagnet La 2 CuO 4

Superfluid: condensate of paired holes La 2-  Sr  CuO 4

Many experiments on the cuprate superconductors show: Tendency to produce modulations in spin singlet observables at wavevectors (2  /a)(1/4,0) and (2  /a)(0,1/4). Proximity to a Mott insulator at hole density  =1/8 with long-range charge modulations at wavevectors (2  /a)(1/4,0) and (2  /a)(0,1/4).

T. Hanaguri, C. Lupien, Y. Kohsaka, D.-H. Lee, M. Azuma, M. Takano, H. Takagi, and J. C. Davis, Nature 430, 1001 (2004). The cuprate superconductor Ca 2-x Na x CuO 2 Cl 2

Many experiments on the cuprate superconductors show: Tendency to produce modulations in spin singlet observables at wavevectors (2  /a)(1/4,0) and (2  /a)(0,1/4). Proximity to a Mott insulator at hole density  =1/8 with long-range charge modulations at wavevectors (2  /a)(1/4,0) and (2  /a)(0,1/4).

Many experiments on the cuprate superconductors show: Tendency to produce modulations in spin singlet observables at wavevectors (2  /a)(1/4,0) and (2  /a)(0,1/4). Proximity to a Mott insulator at hole density  =1/8 with long-range charge modulations at wavevectors (2  /a)(1/4,0) and (2  /a)(0,1/4). Superfluids proximate to finite doping Mott insulators with VBS order ?

Measurements of Nernst effect are well explained by a model of a liquid of vortices and anti-vortices N. P. Ong, Y. Wang, S. Ono, Y. Ando, and S. Uchida, Annalen der Physik 13, 9 (2004). Y. Wang, S. Ono, Y. Onose, G. Gu, Y. Ando, Y. Tokura, S. Uchida, and N. P. Ong, Science 299, 86 (2003). Experiments on the cuprate superconductors also show strong vortex fluctuations above T c

Main claims: There are precursor fluctuations of VBS order in the superfluid. There fluctuations are intimately tied to the quantum theory of vortices in the superfluid

IV. Vortices in the superfluid Magnus forces, duality, and point vortices as dual “electric” charges

Central question: In two dimensions, we can view the vortices as point particle excitations of the superfluid. What is the quantum mechanics of these “particles” ? Excitations of the superfluid: Vortices

In ordinary fluids, vortices experience the Magnus Force FMFM

Dual picture: The vortex is a quantum particle with dual “electric” charge n, moving in a dual “magnetic” field of strength = h×(number density of Bose particles)

V. Vortices in superfluids near the superfluid- insulator quantum phase transition The “quantum order” of the superconducting state: evidence for vortex flavors

A4A4 A3A3 A1A1 A2A2 A 1 +A 2 +A 3 +A 4 = 2  f where f is the boson filling fraction.

Bosons at filling fraction f  At f=1, the “magnetic” flux per unit cell is 2 , and the vortex does not pick up any phase from the boson density. The effective dual “magnetic” field acting on the vortex is zero, and the corresponding component of the Magnus force vanishes.

Quantum mechanics of the vortex “particle” in a periodic potential with f flux quanta per unit cell Space group symmetries of Hofstadter Hamiltonian: Bosons at rational filling fraction f=p/q The low energy vortex states must form a representation of this algebra

Hofstadter spectrum of the quantum vortex “particle” with field operator  Vortices in a superfluid near a Mott insulator at filling f=p/q

Spatial structure of insulators for q=2 (f=1/2) Mott insulators obtained by “condensing” vortices

Spatial structure of insulators for q=4 (f=1/4 or 3/4) Field theory with projective symmetry

Vortices in a superfluid near a Mott insulator at filling f=p/q

100Å b 7 pA 0 pA Vortex-induced LDOS of Bi 2 Sr 2 CaCu 2 O 8+  integrated from 1meV to 12meV at 4K J. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). Vortices have halos with LDOS modulations at a period ≈ 4 lattice spacings Prediction of VBS order near vortices: K. Park and S. Sachdev, Phys. Rev. B 64, (2001).

Measuring the inertial mass of a vortex

Superfluids near Mott insulators Vortices with flux h/(2e) come in multiple (usually q ) “flavors” The lattice space group acts in a projective representation on the vortex flavor space. These flavor quantum numbers provide a distinction between superfluids: they constitute a “quantum order” Any pinned vortex must chose an orientation in flavor space. This necessarily leads to modulations in the local density of states over the spatial region where the vortex executes its quantum zero point motion. Superfluids near Mott insulators Vortices with flux h/(2e) come in multiple (usually q ) “flavors” The lattice space group acts in a projective representation on the vortex flavor space. These flavor quantum numbers provide a distinction between superfluids: they constitute a “quantum order” Any pinned vortex must chose an orientation in flavor space. This necessarily leads to modulations in the local density of states over the spatial region where the vortex executes its quantum zero point motion. The Mott insulator has average Cooper pair density, f = p/q per site, while the density of the superfluid is close (but need not be identical) to this value