 NEMO-3 Detector  Preliminary results Performance of the detector  analysis for 100 Mo, 82 Se and 150 Nd  Background study for  research ( 208.

Slides:



Advertisements
Similar presentations
NEMO-III Status and prospects. 12 December 2005 HEP group Christmas meeting Vladimir Vasiliev.
Advertisements

NEMO-3 experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Coseners House, Abingdon.
11 Mar 2004Nemo Collaboration Meeting1 Preliminary Study of 214 Bi Background in Mo foils Preliminary Study of 214 Bi Background in Mo foils Leo Jenner,
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Vladimir Vasiliev, UCL 2-6 May ’06, Stockholm on behalf of NEMO and SuperNEMO collaborations NEMO.
M. Dracos 1 Double Beta experiment with emulsions?
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory
The SuperNEMO experiment A very low background experiment Jérémy ARGYRIADES, LAL Orsay.
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
Double Beta Decay Present and Future
First results from NEMO 3 Experiment V. Vasiliev (ITEP), H. Ohsumi (Saga) and Ch. Marquet Nara, Japan, June 2003 NEMO collaboration.
Double beta search : experimental view Laurent SIMARD, LAL - Orsay 6 th Rencontres du Vietnam, Hanoi, 6 th -12 nd August 2006.
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Warsaw - NEMO initiative group Zenon Janas for Search for neutrinoless double  decay in NEMO-3 and SuperNEMO experiments Warszawa,
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
Status of R&D of the SuperNEMO experiment Gwénaëlle Broudin-Bay LAL Orsay GDR neutrino – Bordeaux – Oct
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
SuperNEMO Simulations Darren Price University of Manchester July, 2005.
Recent Results of the NEMO 3 Experiment Ladislav VÁLA Czech Technical University in Prague NOW2006, 9 th – 16 th September 2006, Conca Specchiulla, Italy.
Double beta decay and neutrino physics Osaka University M. Nomachi.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory FIRST RESULTS Xavier Sarazin 1 for the NEMO-3 Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux,
Neutrino Ettore Majorana Observatory
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
1 TAUP - September 7, 2015S. Blot Investigating ββ decay with NEMO-3 and SuperNEMO Summer Blot, on behalf of the NEMO-3 and SuperNEMO experiments 7 September.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
Ultra-low background gamma spectrometry 2 nd LSM-Extension Workshop, Valfréjus, 16 October 2009 Pia Loaiza Laboratoire Souterrain de Modane.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
IOP HEPP Matthew Kauer Double beta decay of Zr96 using NEMO- 3 and calorimeter R&D for SuperNEMO IOP HEPP April Matthew Kauer UCL London.
NEMO3 analysis and SuperNEMO development Benjamin Richards D14.
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
ILIAS JRA2 : WG1+WG2 Se82, production and purification Cascina, November 3rd, 2005Dominique Lalanne.
Neutrino Ettore Majorana Observatory
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
1st Year Talk1 PEP Violation Analysis with NEMO3 and Calorimeter R&D for SuperNEMO Anastasia Freshville.
By Matthew Kauer First Year Report – 15 June 07 Measurement of 2b2ν Half-Life of Zr96 and Lightguide Studies for SuperNEMO Calorimeter Matthew Kauer UCL.
A screening facility for next generation low-background experiments Tom Shutt Case Western Reserve University.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
Pia Loaiza AARM-Berkeley March 2010
1 Study of 48 Ca Double Beta Decay by CANDLES T. Kishimoto Osaka Univ.
June INPC20071 Study of 48 Ca double beta decay with CANDLES OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
DPF-JPS 2006 Oct 31, Hawaii 1 CANDLES system for the study of 48-Ca double beta decay T. Kishimoto Osaka Univ.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
V. Egorov. JINR + LSM V. Egorov = The love story 1991 Orsay S.Jullian and D.Lalanne proposed to bring our 2β-spectrometer to Modane 1993 TGV.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
ICARUS T600: low energy electrons
SuperNEMO collaboration
The COBRA Experiment: Future Prospects
Measurement of surface radioactivity by Alpha/Beta detection
Double Beta Decay of 48Ca with CaF2(Eu) - ELEGANT VI -
Very preliminary study of the random background for the BiPo detector (PhoSwich configuration) Work done by Jonathan Ferracci.
Preliminary Study of 214Bi Background in 100Mo foils
Search for 0nbb decay with SuperNEMO
Sr-84 0n EC/b+ decay search with SrCl2 crystal
• • • Ge measurements for SuperNEMO
Double Beta experiment using nuclear emulsions?
Double Beta experiment with emulsions?
Presentation transcript:

 NEMO-3 Detector  Preliminary results Performance of the detector  analysis for 100 Mo, 82 Se and 150 Nd  Background study for  research ( 208 Tl and Radon)  Future of NEMO NEMO Experiment Neutrino Ettore Majorana Observatory Journées Neutrinos novembre 2003 LPNHE-Paris Xavier Sarazin for NEMO Collaboration

NEMO Experiment Neutrino Ettore Majorana Observatory  Search for neutrinoless double beta decay  Study several isotopes Mo 100, Se 82, Te 130, Cd 116, Zr 96, Ca 48, Nd 150  Tag and measure all the components of background e -, e +, , , neutrons “zero background” experiment

Double beta  (0 ) decay : Physics beyond the standard model  (0 ) : 2n  2p+2e -  L = 2 Process  Majorana Neutrino  and effective mass  Right-handed current in weak interaction  Majoron emission  SUSY particle exchange WW WW n n p p ee ee M eR eL (Q  ~ MeV) ( ) h h

1 sector of NEMO3  Sources: 20 m 2, total mass ~ 10 kg, thickness ~ 60 mm  Tracking detector (6180 Geiger cells in He+alcohol): Vertex  t = 5 mm,  z = 1 cm  Calorimeter (1940 plastic scintillators + PMTs low radioactivity)  E /E = 3% at 3 MeV   and neutron shield: Iron shield (18 cm) + water shield + wood shield + parafin  magnetic field B=25 G  all materials low radioactivity (total activity in 208 Tl and 214 Bi  300 Bq) Located in Modane Underground Laboratory NEMO-3 Detector

 isotope foils scintillators PMTs Calibration tube Cathodic rings Wire chamber

AUGUST 2001 June 2002 : tests runs February 2003 : beginning of data taking

coil Iron shield Water tank wood

Sources preparation

 Bkg Sources   thickness  mg/cm 2 ) Q  = 3034 keV Q  = 2995 keV 82 Se (0.93 kg) 100 Mo (6.9 kg) Sources in NEMO-3 detector

Expected background and sensitivity External and neutron background negligeable 7 kg of 100 Mo Source contamination : A ( 214 Bi) < 0.3 mBq/kg A ( 208 Tl) < 0.02 mBq/kg Internal background : 214 Bi < 0.04 evts/y/kg 208 Tl < 0.04 evts/y/kg  0.11 evts/y/kg Total Bkg < 1.4 event/year T 1/2 (0 ) > y  m  < 0.1 – 0.3 eV 5 years of data Energy window: [ ] MeV Efficiciency  = 14% 1 kg of 82 Se Source contamination : A ( 214 Bi) = 1.2  0.5 mBq/kg (measured) A ( 208 Tl) = 0.4  0.1 mBq/kg Internal background :  0.01 evts/y/kg Hot spots: Pollution rejected Bkg ~ 0 event/year T 1/2 (0 ) > y  m  < 0.6 – 1.2 eV

NEMO-3 Preliminary Results Performance of the detector  analysis for 100 Mo, 82 Se, 150 Nd Background analysis for  search

Trigger: 1 PM > 150 keV 3 Geiger hits (2 neighbour layers + 1) Counting rate = 7.5 Hz Proportion of types of events in raw data: Type of eventRate (mHz) 1 e , 0  e , N  150 e  e  pairs110 Crossing e  80  event 5.4 mHz Data Tacking October 1 st days of data tacking ~ 75 % efficiency Days of data collecting / month Efficiency of data collecting / month

Tracking Detector Performances  0.5 % Geiger cells OFF  97.5 % Geiger cells with 2 cathodic signals  Longitudinal propagation of Geiger plasma: Efficiency > 93% for 90% of Geiger cells RAW DATA PROCESSED DATA

Transversal and Longitudinal Resolution on the Vertex 1 e  channel at 1 Mev:   (1 MeV) = 0.2 cm  // (1 MeV) = 0.7 cm (Z=0) 2e- channel (1 MeV+ 0.5 MeV)   (1 MeV) = 0.6 cm  // (1 MeV) = 1.8 cm (Z=0) 207 Bi sources at 3 well known positions in each sector (emission of two e- conversion at  1 and 0.5 MeV)

Performances of the calorimeter Tube in each sector where calibration sources are introduced (3 positions) 3 electron energies : 486 keV and 976 keV with 207 Bi, and 2.28 MeV with 90 Sr 90 Sr End point 2,28 MeV At 1 MeV (Q   3 MeV for 100 Mo and 82 Se): 207 Bi 482 keV 976 keV FWHM = 135 keV FWHM  E /E Ext. Wall (PMTs 5") 14 % 5.8 % /  E( MeV ) Int. Wall (PMTs 3") 17 % 7.1 % /  E( MeV )

 2 event  EVENT OBSERVED BY NEMO-3… E 1 +E 2 = 2088 keV (  t)mes –(  t)theo = 0.22 ns (  vertex)  = 2.1 mm (  vertex) // = 5.7 mm

100 Mo 2  2 preliminary results (14 Feb – 30 Sep. 2003) 160 days events Background substracted 2  2 Monte Carlo NEMO 3 S/B (> 1 MeV)  100 T 1/2 = 7.8  0.09 (stat)  0.09 (syst)  y S/B = 40

100 Mo 2  2 Single Energy Distribution Calculations for 100 Mo: (Simkovic, J. Phys. G, 27, 2233, 2001) HSD, higher levels contribute to the decay SSD, 1+ level dominates in the decay (Abad et al., 1984, Ann. Fis. A 80, 9 ) 100 Mo 00 100 Tc 00 11 Effect in one electron spectrum

100 Mo 2  2 angular distribution Background substracted NEMO 3 2  2 Monte Carlo

82 Se 2  2 preliminary results (14 Feb – 30 Sep. 2003) Contaminated with low energy  -emitters Cuts: E > 300 keV Cos (  ) < hours 1100 events S/B = 4.2 Background substracted 2  2 Monte Carlo T 1/2 = 9.52  0.25 (stat)  0.9 (syst)  y

150 Nd 2  2 preliminary results (June 2002 – 30 Sep. 2003) 3834 hours 400 events S/B = 4.2 Background substracted 2  2 Monte Carlo T 1/2 = 7.5  0.3 (stat)  0.7 (syst)  y

Two natural isotopes which have the greatest Q  values > 3 MeV: 214 Bi : Q   3.27 MeV 208 Tl : Q   MeV Design NEMO-3 detector for 10 kg: 214 Bi in source foils < 0.3 mBq/kg 208 Tl in source foils < 0.02 mBq/kg Total activity of the detector (200 tons)  300 Bq Origin of Background at high energy In the Modane Underground Laboratory: Fast neutron flux (  1 MeV): 3.5 ± n.cm -2 s -1 Thermal neutron flux (~0.025 eV): 1.6 ± n.cm -2 s -1

 Electron  Gamma : 50% efficiency at 1 MeV Energy Threshold = 30 keV  Time of Flight : Time Resolution  250 ps at 1 MeV  e  /e - separation with a magnetic field of 25 G 3% confusion at 1 MeV  Delayed tracks (<700  s) to tag delayed  from Bi Bi  214 Po (164  s)  210 Pb How NEMO-3 tags the background

Measurement of the sources of background 214 Bi channel e  (  with T 1/2 (  )  164  s ( 214 Bi -  214 Po -  210 Pb  ) 208 Tl channels e   ’s with E  = 2.6 MeV 212 Bi  212 Po e  (  )  T 1/2 (  )  300 ns neutrons, external gammas e  crossing, e  e , e  e  > 4 MeV

Electron + N  ’s 208 Tl (E  = 2.6 MeV) Electron crossing > 4 MeV Neutron capture BACKGROUND EVENTS OBSERVED BY NEMO-3… Electron +  delay track (164  s) 214 Bi  214 Po  210 Pb Electron – positron pair B rejection 

Search for 208 Tl background in the foils 3800 h of data analysed 14 Feb – 30 Sep Tl cuts: E  1 > 400 keV E  2 > 1900 keV E  > 200 keV MC:  (Mo) = 0.16% 3.4 Rn events (3800 h.) for 20 sectors look for e , e2 , e3  events coming from the foil sourcesN eventsA (  Bq/kg) HPGe measure 100 Mo  Mo metal  40 < Mo comp.350< 110 Cu0 82 Se   Nd   2000 nat Te5~250< 90 VERY PRELIMINARY Good agreement with the HPGe measurements

Neutron and High-Energy gamma Background Only 1  -like event > 4 MeV detected after 160 days of data tacking ! (14 Feb – 30 Sep. 2003) Run 2058 event March Te source (sector 19) E 1 +E 2 = 4448 keV look for e  e  events > 4 MeV coming from the foil

Two different measurements of radon in the NEMO-3 gas: Radon detector: sensitivity: 1 count/day for 1 mBq/m 3 Radon measurement  20 mBq/m 3 (1e  + 1  ) channel in the NEMO-3 data: Able to measure Radon every half day Radon measurement  30 mBq/m 3 ~ a few  0 -like  events due to radon, expected in 1 year !!! TOO HIGH !!! A free Radon Tent surrounding the NEMO-3 detector in construction: February 2004: 200 kg Charcoal Factor ~ 8 for Radon purification Spring 2004: Full Radon purification system Factor ~ Rn 218 Po 214 Pb 214 Bi 214 Po 210 Pb Radon in NEMO-3    s

E1+E2= 2880 keV Run 2220, event , May 11th 2003 a  -like event due to Radon from the gas  track (delay = 70  s) 214 Po  210 Pb 214 Bi  214 Po  decay IN THE GAS

Fall 2003 : Tent surrounding the detector A( 222 Rn) ~ Bq/m 3 Today : A( 222 Rn) in the LSM ~10 Bq/m 3 Spring 2004 : Radon-free Gas Facory A( 222 Rn) ~ 0.2 Bq/m m 3 /h Free-Radon Purification System

Sensitivity of NEMO3 to measure sources of background Design NEMO3 for 10 kg: 208 Tl in source foils < 0.02 mBq/kg 214 Bi in source foils < 0.3 mBq/kg neutron flux < n cm -2 s -1 Sensitivity NEMO3 after 2 years of data :  208 Tl in source foils < 2  Bq/kg channel e  ’s (E  = 2.6 MeV) 212 Bi  212 Po e  (300 ns)  214 Bi in source foils < 2  Bq/kg measured by channel e (   ( 214 Bi  214 Po  210 Pb; T 1/2 = 164  s )  neutrons < n cm -2 s -1 measured by e - crossing > 4 MeV Sensitivity to 100 kg of isotopes

Future for a NEMO Detector Tracking-Calorimeter Technique

NEMO-3 QD IH QD IH Expected values of  m  from neutrinos oscillations parameters Pascoli and Petcov, hep-ph/ (best fit atm + sol ) Quasi-Degenerate (QD):  m  > 0.6 eV Inverted Hierarchie (IH): eV <  m  < 0.6 eV Normal Hierarchie (NH):  m  < eV ~ ~ ~ ~ Next Generation of NEMO detector « detect » 1 gold event/year with  m  ~ 20 meV

Number of  event detected / year: ln2. N. . M A. T 1/2 (y) 0 N  / year  N : Avogadro A : atomic mass M : mass (g) of  enrich. Isotope  : detection efficiency Future of NEMO Real measurement with 1 GOLD EVENT / YEAR M = k  100 kg of 100 Mo or 82 Se  = 0.5 Background = 0.1 event / year 1  Gold event detected / year 0 T 1/2  2  k years  m  = 20 – 60 meV Goal of a next NEMO detector:

3-4-5 December 2003: 1 st meeting for Future of NEMO Start working groups to prepare a design proposal for a future NEMO detector Advantage of a Calo-Tracking approach: Can measure several isotopes Tag and measure all backgounds : zero background experiment May detect « Gold events » Start with realistic 100 kg isotope module… could be extended to 1 ton with several modules) Working groups: R&D Calorimeter R&D Tracking Sources Enrichment ( 100 Mo, 82 Se, 150 Nd…) Purification sources Simulation Main challenges: Energy resolution Efficiency Sources (enrichment, purification) Future of NEMO

ENERGY RESOLUTION IS ONE OF THE MAIN CHALLENGE Goal: < 0.1  event/year in the  energy window FWHM (  ray at 3 MeV)  350 keV one  event/year expected in the  energy window NEMO-3 (7 kg):  2 (  ray) =  2 (Calorimeter) +  2 (dE/dX in foil) +  2 (dE/dX in tracking) CALORIMETER: separate e  /  measurement to improve e  energy resolution (NEMO-3 ~ 15% at 1 MeV)  electron: Silicon (Li) detector (~ 5 mm, noise ~ keV at normal T o ) Very good thin scintillator (~ 2 cm)  gamma: thicker scintillators (100% efficiency instead of 50%) SOURCES: Decrease the energy losses in the foil (NEMO-3 ~ g/cm 2, 60  m: ~150 keV)  Active sources (ex: 2 foils 20  m + counters)  internal Background rejection TRACKING:  Similar Geiger drift wire chamber  TPC in He (Japan group)  ee  208 Tl internal bkg  

ILIAS European funding for  research JRA1 : low bkg. techn. for Deep Underground Laboratories Links LSM and Boulby Develop. Ultra Low Bkg. Facility: Big effort on Germanium Radon factory NEMO people involved in ILIAS (5 years) JRA2 : R&D for next detectors R&D for calorimeter (silicon, scintillators…) 82 Se 2 kg production, purification and source making ( ) 150 Nd enrichment study N4 : next generation of  detectors NEMO-Next working groups and Proposal 300 kEuros 60 kEuros IN2P3 (5 years)

NOUVEAUX COLLABORATEURS SONT LES BIENVENUS New members already interested: USA (Texas University), UK (UCL), Japan (KEK)

CONCLUSIONS  NEMO-3 Detector running since 14 Feb Data tacking efficiency ~75%  Performance of the detector has been reached !   preliminary results for 100 Mo, 82 Se and 150 Nd already more than  events collected  Background study for  search: 208 Tl (e  N  channel) : good agreement with HPGe measurements Neutrons and High-energy  : only 1  -like event > 4 MeV ! Radon: mBq/m3 inside the detector a few  -like events/year expected Too high !  Free radon purification system under construction Radon/8 in Feb Radon/50 in Spring 2004  Future of NEMO: First meeting 3-5 december 2003 start working groups to prepare a design proposal for a next detector Goal (dream ?) for Next NEMO: be able to « detect » 1 gold event/year with  m  ~ 20 meV