Vertex 2002, Kailua-Kona 7.11.2002Tobias Stockmanns, Universität Bonn1 Serial Powering of Pixel Modules T. Stockmanns, P. Fischer, O. Runolfsson and N.

Slides:



Advertisements
Similar presentations
DC-DC Fundamentals 1.4 Charge Pump Regulator
Advertisements

ATLAS SCT Endcap Detector Modules Lutz Feld University of Freiburg for the ATLAS SCT Collaboration Vertex m.
Serial Powering vs. DC-DC Conversion - A First Comparison Tracker Upgrade Power WG Meeting October 7 th, 2008 Katja Klein 1. Physikalisches Institut B.
EKT214 - ANALOG ELECTRONIC CIRCUIT II
© 2012 Pearson Education. Upper Saddle River, NJ, All rights reserved. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth.
Tullio Grassi ATLAS–CMS Power Working Group 31 March 2010 DC-DC converters and Power Supplies requirements for CMS HCAL Phase 1 Upgrade.
Power Distribution Studies at Fermilab Aida Todri, FNAL ATLAS/CMS Power WG Meeting March 31 st, 2010.
ACES Workshop 3-4 March, 2009 W. Dabrowski Serial power circuitry in the ABC-Next and FE-I4 chips W. Dabrowski Faculty of Physics and Applied Computer.
1 Serial powering Marc Weber, RAL Common ATLAS CMS Electronics Workshop for SLHC What is SP? Why is it needed? Experimental results and why is SP not noisy?
DC/DC Converter Update Markus Friedl (HEPHY Vienna) B2GM, 22 July 2012.
TRANSISTOR Transistor is a semiconductor device made of a solid piece of semiconductor material,with atleast three terminals for connection to an external.
Advantages & Disadvantages of DC-DC Conversion Schemes Power Task Force Summary Meeting January 30 th, 2009 Katja Klein 1. Physikalisches Institut B RWTH.
March 20, 2001M. Garcia-Sciveres - US ATLAS DOE/NSF Review1 M. Garcia-Sciveres LBNL & Module Assembly & Module Assembly WBS Hybrids Hybrids WBS.
SVX4 chip 4 SVX4 chips hybrid 4 chips hybridSilicon sensors Front side Back side Hybrid data with calibration charge injection for some channels IEEE Nuclear.
18-Jan-021W. Karpinski System Test Design verification of petals and interconnect boards and control links without detectors a)mechanics b)electrical.
F. Arteche, C. Esteban Instituto Tecnológico de Aragón D. Moya, I. Vila, A. L. Virto, A. Ruiz Instituto de Física de Cantabria Powering requirements and.
Readout of DC coupled double sided sensors with CBMXYTER: Some first thoughts Peter Fischer, Heidelberg University.
13 Dec. 2007Switched Capacitor DCDC Update --- M. Garcia-Sciveres1 Pixel integrated stave concepts Valencia 2007 SLHC workshop.
LSST Electronics Review – BNL, January LSST Electronics Review BNL January Power & Voltage Plan R. Van Berg Electronics Mini-Review.
ANALOG CIRCUIT AND DEVICES 10/7/ Semester I 2013/2014 Course Code: EEE 3123.
1 Module and stave interconnect Rev. sept. 29/08.
Serial vs. Parallel Connections. Serial Connections Serial connections are positive-to-negative in a chain.
FP420 Tracker and Timing detector Low and high voltage supply INFN/Univ. of Torino Cern meeting, Jan
ALICE DCS Workshop 28/29 May 2001 Vito Manzari, INFN Bari SSD (Silicon Strip Detector) SDD (Silicon Drift Detector) SPD (Silicon Pixel Detector) Detector.
Waclaw Karpinski General meeting CMS TRACKER SYSTEM TEST Outer Barrel –TOB Inner Barrel –TIB End cap –TEC TIB TOB TEC Different Geometries One.
1 Serial Powering for Silicon Strip Detectors at SLHC Marc Weber (RAL), Giulio Villani (RAL), M. Lammentausta (Savonia Polytechnic Kuopio) The problem:
Laura Gonella – University of Bonn – 27/09/20111 The Shunt-LDO regulator for powering the upgraded ATLAS pixel detector Laura Gonella University of Bonn.
Power Distribution Existing Systems Power in the trackers Power in the calorimeters Need for changes.
Chapter 6 Voltage Regulators By En. Rosemizi Bin Abd Rahim EMT212 – Analog Electronic II.
CLIC and ILC Power Distribution and Power Pulsing Workshop Summary Document 10/5/2011G. Blanchot1.
1 J.M. Heuser – CBM Silicon Tracking System Roadmap for the development of STS module demonstrators Concept Common interfaces/dimensions Some technical.
Preparation of Module Assembly and Stringtest Haridas, Heinz, Marge One possibility for an assembly and test line? Preparation of a full string test –aim.
2 Silicon pixel part Done and to be written Written! Under way To be done Introduction 1.Hybrid Pixel Assembly Concept 2.Silicon sensor 1.First thinned.
D. Nelson October 7, Serial Power Overview Presented by David Nelson
A serial powering scheme for the ATLAS pixel detector at sLHC L. Gonella, D. Arutinov, A. Eyring, M. Barbero, F. Hügging, M. Karagounis, H. Krüger, N.
Pixel Endcap Power Distribution Phase 1 Upgrade Plans Fermilab, University of Mississippi, University of Iowa Lalith Perera University of Mississippi CMS.
AIDA design review Davide Braga Steve Thomas ASIC Design Group 11 February 2009.
Serial Powering System Architecture Peter W Phillips STFC Rutherford Appleton Laboratory On behalf of the SP Community Acknowledgement: many figures prepared.
EMT212 – Analog Electronic II
Compilation of Dis-/Advantages of DC-DC Conversion Schemes Power Task Force Meeting December 16 th, 2008 Katja Klein 1. Physikalisches Institut B RWTH.
Rutherford Appleton Laboratory Particle Physics Department G. Villani Σ Powering Prague TWEPP TWEPP-07 Topical Workshop on Electronics for Particle.
Pixel power R&D in Spain F. Arteche Phase II days Phase 2 pixel electronics meeting CERN - May 2015.
Summary of FPIX tests Tom Zimmerman Fermilab May 16, 2007.
SP & DC-DC Considering the benefits of combining serial powering and DC-DC conversion technologies in powering ATLAS SCT upgrade modules & staves Richard.
The ATLAS Pixel Detector
Rutherford Appleton Laboratory Particle Physics Department 1 Serial Powering Scheme Peter W Phillips STFC Rutherford Appleton Laboratory On behalf of RAL.
EOS and type I Prototype Service Modules Mike Dawson (Oxford), Rob Gabrielczyk (RAL), John Noviss (RAL) 19 th January 2015 ATLAS Upgrade Activities, Oxford.
1 Serial powering elements What have we done in the last few years? What have we learnt so far ? Roadmap Roadmap for serial powering Marc Weber, RAL Power.
1 Single event upset test of the voltage limiter for the ATLAS Semiconductor tracker TSL Experiment Number: F151 distance between power supplies and modules.
Upgrade of the TileCAL LVPS System Gary Drake Argonne National Laboratory, USA In Collaboration with The University of Chicago CERN Feb. 25, 2009 ATLAS.
1 FANGS for BEAST J. Dingfelder, A. Eyring, Laura Mari, C. Marinas, D. Pohl University of Bonn
Tapes and Integration of Powering (endcap) Pepe Bernabeu (IFIC) Valencia/UK - Experience and future collaboration on staves/petals, June 17 th 2010.
Serial powering for pixels F. Hügging, D. Arutinov, M. Barbero, A. Eyring, L. Gonella, M. Karagounis, H. Krüger, N. Wermes SLHC-PP Annual Meeting, CIEMAT,
Full Wave Rectifier Circuit with Working Theory
30 Mar 2007SiD tracking meeting -- Powering -- M. Garcia-Sciveres1 Power distribution R&D for ATLAS sLHC upgrades Maurice Garcia-Sciveres Lawrence Berkeley.
Zener Diode.
Sept 24, 2005Vertex Power distribution --- M. Garcia-Sciveres 1 Power Distribution, Cables, and Reliability Vertex 2007 Maurice Garcia-Sciveres.
Electronics Technology Fundamentals Chapter 25 Discrete and Integrated Voltage Regulators.
Integrated Shunt-LDO Regulator for FE-I4
Electronic Devices Ninth Edition Floyd Chapter 17.
FBK / INFN Roma, November , 17th 2009 G. Darbo - INFN / Genova
Preliminary thoughts on SVT services
IBL Overview Darren Leung ~ 8/15/2013 ~ UW B305.
Henning E. Larsen, INFN 12 July 2006
Advantages & Disadvantages of DC-DC Conversion Schemes
Compilation of Dis-/Advantages of DC-DC Conversion Schemes
PERSPECTIVE ON MICROWAVE MONITOR AND CONTROL INTERFACES
Chapter 6: Voltage Regulator
BESIII EMC electronics
Presentation transcript:

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn1 Serial Powering of Pixel Modules T. Stockmanns, P. Fischer, O. Runolfsson and N. Wermes

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn2 Why serial powering? or

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn3 Power consumption Every ATLAS - pixel module needs: –2 supply voltages: NameVoltageCurrentPower VDDA1.7 V970 – 1290 mA1650 – 2200 mW VDD2 V500 – 800 mA1000 – 1320 mW Sum  A Total detector (1750 modules) 2 V3500 A –1 HV bias connection –3 ground lines 6 power lines per module

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn4 Cable cable costs cable size cable mass Total distance: 152 m Maximum voltage drop:6.5 V Optimum:No cables at all

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn5 Parallel Powering For a stave of 13 modules: -power + sense lines:104 -supply voltage: 2 V / 1,7 V -supply current:26 A -power consumption:47 W + voltage drop:226 W

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn6 readout Alternative: Serial Powering shunt regulator VDD linear regulator VDDA 26 V 24 V 20 V 2 V 0 V For a stave of 13 modules: -power + sense lines:2 -supply voltage:26 V -supply current:2 A -power consumption:52 W + voltage drop:65 W

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn7 Pros and Cons of both concepts Parallel PoweringSerial Powering ProsCons Individual control of each module Difficult to switch off a single module No risk for the full chain Risk to loose a full chain Possible noise crosstalk via power lines ConsPros low voltage + high current  high voltage drop high voltage + low current  low voltage drop high total power of pixel detector lower power consumption of pixel detector one power supply per module one power supply per chain large amount of cables less amount of cables

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn8 Shunt regulators 10 shunt regulators built with commercial ICs All of them operated in series 2 modified to work with the required voltage water cooled

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn9 Parallel readout of 2 serially powered modules

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn10 Results of the two modules Serial powered Module 1Module 2 Threshold:4700 e - Dispersion:480 e - Noise: 250 e - working pixels:20800 Threshold:4680 e - Dispersion:460 e - Noise: 150 e - working pixels:14400

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn11 No influence on module performance Threshold:4700 e - Dispersion:480 e - Noise: 150e - / 250 e - Serial poweredParallel powered Threshold:4330 e - Dispersion:300 e - Noise: 148 e -

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn12 Shunt Regulator slope of shunt regulators depends on threshold and current variation higher slope  better stability but: higher slope  more load on lowest regulator Individual Shunt Regs Sum

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn13 Shunt Regulator slope of shunt regulators depends on threshold and current variation higher slope  better stability but: higher slope  more load on lowest regulator

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn14 Integration of regulators in newest FE-chip shunt regulator and linear regulator implemented and tested in the newest radhard version of the FE-chip

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn15 Threshold measurement 4 FE-I chips in parallel1 + 2 chips in series Threshold:4680 e - Dispersion:100 e - Noise: 264 e - Threshold:4780 e - Dispersion:105 e - Noise: 268 e -

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn16 Serial Powering Sensorless Module 13 working chips working pixels typ. Threshold:4800 e - Dispersion:1340 e e - (untuned!) Noise: 214 e e -

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn17 Summary Serial Powering of pixel detectors seems to be possible: –Feasibility of serial powering proven with external regulators –Regulators implemented into the new radiation hard FE-chips –Internal regulators tested on single chips and modules –electrical performance very similar  hope that the differences in noise disappear with new version of regulators Next steps: –Using several modules in a series –Measuring the performance of the modules depending on different situations –Testing possible failure scenarios

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn18 „On Module“ – Serial Powering On each side of a module the FE-chips are connected in series  Current consumption goes down by a factor of 8 with an 8- times higher voltage Opposite FE-chips are on the same DC-potential 16 V14 V 12 V10 V8 V6 V4 V2 V 16 V14 V 12 V10 V8 V6 V4 V2 V

Vertex 2002, Kailua-Kona Tobias Stockmanns, Universität Bonn19 „On Module“ – Serial Powering Implementation: –AC-coupling between FE-chips and MCC necessary –Special sensor design necessary Disadvantage: –More complicated module design Advantages: –low current consumption –no risk of loosing a chain of modules –individual module operation like in parallel powering