DESIGNING AGAINST FATIGUE

Slides:



Advertisements
Similar presentations
Chap.8 Mechanical Behavior of Composite
Advertisements

Heat Treatment of Steel
CREEP  It can be defined as the slow & progressive (increasingly continuing) deformation of a material with time under a constant stress.  It is both.
CHE 333 Class 20 Fracture continued.
Chapter 11 Mechanical Properties of Materials
Design of Machine Elements
Chapter Outline Shigley’s Mechanical Engineering Design.
ME 388 – Applied Instrumentation Laboratory Fatigue Lab.
Designing for Stiffness
7. Fatigue Fracture Fracture surface of a bicycle spoke made of 7075-T6 aluminum alloy 25 × magnification 100 × magnification.
FATIGUE TEST EXPERIMENT # 5 Instructor: M.Yaqub. FATIGUE.
Chapter 5 – Design for Different Types of Loading
ENGR 225 Section
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
LECTURER6 Factors Affecting Mechanical Properties
Lab 6B -Fracture Toughness and Fracture Toughness-limited Design Big bang for the buck!
Thermal Strains and Element of the Theory of Plasticity
PALESTINE UNIVERSITY BUILDING MATERIAL chapter No.#4 Steel.
Manufacturing technical objects. MATERIALS To decide which materials are suitable for making technical objects, manufacturers must first determine the.
Metal Alloys: Their Structure & Strengthening by Heat Treatment
Effect of finite size of component The SIF derived earlier is for cracks in an infinite body. However the finite size, geometry of the component, loading.
Design Agains Fatigue - part Fatigue Endurance Prediction Design Agains Fatigue - part Fatigue Endurance Prediction Milan Růžička
High strength materials are being increasingly used in designing critical components to save weight or meet difficult service conditions. Unfortunately.
Unit V Lecturer11 LECTURE-I  Introduction  Some important definitions  Stress-strain relation for different engineering materials.
FATIGUE.
Chapter 7 Fatigue Failure Resulting from Variable Loading
STRUCTURES Outcome 3 Gary Plimer 2008 MUSSELBURGH GRAMMAR SCHOOL.
Fatigue Fatigue is the lowering of strength or the failure of a material due to repetitive stress, which may be above or below the yield strength. Many.
Annealing, Normalizing, and Quenching of Metals
1 Metallurgy Unit 7: Failure Analysis Fatigue. Refers to the type of failure normally occurring after a lengthy period of repeated stress / strain cycling.
Copyright Prentice-Hall Behavior and Manufacturing Properties of Part I Q1.1 (25): What is the difference between a material’s mechanical property and.
Design Stress & Fatigue
DESIGN FOR FATIGUE STRENGTH
Welding Design 1998/MJ1/MatJoin2/1 Design. Lesson Objectives When you finish this lesson you will understand: Mechanical and Physical Properties (structure.
Chapter 7 Fatigue Failure Resulting from Variable Loading
Mechanics of Materials Lab
FATIGUE Fatigue of Materials (Cambridge Solid State Science Series) S. Suresh Cambridge University Press, Cambridge (1998)
Stress and Strain – Axial Loading
Fatigue Failure Due to Variable Loading
1 Design for Different Type of Loading Lecture Notes Dr. Rakhmad Arief Siregar Kolej Universiti Kejuruteraan Utara Malaysia Machine Element in Mechanical.
FATIGUE Fatigue of Materials (Cambridge Solid State Science Series) S. Suresh Cambridge University Press, Cambridge (1998) MATERIALS SCIENCE &ENGINEERING.
Chapter 7 Fatigue Failure Resulting from Variable Loading
Welding Inspection and Metallurgy
Machine Design I (MCE-C 203) Mechatronics Dept., Faculty of Engineering, Fayoum University Dr. Ahmed Salah Abou Taleb Lecturer, Mechanical Engineering.
Jiangyu Li, University of Washington Yielding and Failure Criteria Plasticity Fracture Fatigue Jiangyu Li University of Washington Mechanics of Materials.
Mechanical Properties of Materials
Course No.: MEBF ZC342 MACHINE DESIGN
Fatigue 7-1. Fatigue of Metals Metals often fail at much lower stress at cyclic loading compared to static loading. Crack nucleates at region of stress.
STRUCTURES Young’s Modulus. Tests There are 4 tests that you can do to a material There are 4 tests that you can do to a material 1 tensile This is where.
Hasmukh Goswami College Of Engineering
FATIGUE TESTING Presented by- BIPIN KUMAR MISHRA 2011EME11 SHEELOO SINGH 2011EME08.
DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING
CHAPTER OBJECTIVES Show relationship of stress and strain using experimental methods to determine stress-strain diagram of a specific material Discuss.
Heat Treatment of Steel
Dr. S & S.S.GHANDHY GOVERNMENT ENGINEERING COLLEGE
Introduction We select materials for many components and applications by matching the properties of the material to the service condition required of the.
Methods to Maximize Design Life
Poisons Ratio Poisons ratio = . w0 w Usually poisons ratio ranges from
Heat Treatment of Metals
Determination of Fracture Toughness
1/18/2019 6:28 AM C h a p t e r 8 Failure Dr. Mohammad Abuhaiba, PE.
Mechanical Properties: 2
Strain Hardening & Annealing
Behavior of Materials in Service (2)
FATIGUE FATIGUE Dr. Mohammed Abdulrazzaq
Heat Treatment of Metals
Lab8: Fatigue Testing Machine
Lab8: Fatigue Testing Machine
Selection Criteria Properties Availability Cost
Presentation transcript:

DESIGNING AGAINST FATIGUE Fatigue failure account for about 80 % of part failure in engineering Occurs subjected to fluctuating loads Generally, fatigue fractures occurs as a result of crack which usually start at some discontinuity in the material, or at other stress concentration location, and then gradually grow under repeated application of load. As the crack grows, the stress on the load-bearing cross-section increase until it reaches a high enough level to cause catastrophic fracture of the part.

DESIGNING AGAINST FATIGUE Fracture surface which usually exhibits smooth areas which correspond to the gradual crack growth stage, and rough areas, which correspond to the catastrophic fracture stage. The smooth parts of the fracture surface usually exhibit beach marks which occurs as a result of changes in the magnitude of the fluctuating fatigue load. Fatigue behavior of materials is usually described by means of the S-N diagram which gives the number of cycles to failure, N as a function of the max applied alternating stress, Sa.

DESIGNING AGAINST FATIGUE

DESIGNING AGAINST FATIGUE Types of fatigue loading Alternating stress Alternating tension – compression Stress ratio, R = min / max = -1 Fluctuating stress Positive R value Greater tensile stress than compressive stress max = m + a max = m - a

DESIGNING AGAINST FATIGUE Many types of test are used to determine the fatigue life of material Small scale fatigue test – rotating beam test Which a specimen subjected to alternating compression and tension stresses of equal magnitude while being rotate Data from this result are plotted in the form of S-N curves Which the stress S to cause failure is plotted against number of cycles N Figure (a) – S-N curves for carbon steel (b) - S-N curves aluminum alloy

DESIGNING AGAINST FATIGUE In the majority cases, the reported fatigue strength or endurance limits of the materials are based on the test of carefully prepared small samples under laboratory condition. Such values cannot be directly used for design purposes because the behavior of a component or structure under fatigue loading does depend not only on the fatigue or endurance limit of the material used in making it, but also an several other factors including : Size and shape of the component or structure Type of loading and state of stress Stress concentration Surface finish Operating temperature Service environment Method of fabrication

DESIGNING AGAINST FATIGUE Endurance-limit modifying factors Se = kakbkckdkekfkgkhSe’ Where Se = endurance limit of component Se’ = endurance limit experimental ka = surface finish factor (machined parts have different finish) kb = size factor (larger parts greater probability of finding defects) kc = reliability / statistical scatter factor (accounts for random variation) kd = operating T factor (accounts for diff. in working T & room T) ke = loading factor (differences in loading types) kf = stress concentration factor kg = service environment factor (action of hostile environment) kh = manufacturing processes factor (influence of fabrication parameters)

DESIGNING AGAINST FATIGUE

DESIGNING AGAINST FATIGUE ka = Surface finish factor The surface finish factor, ka, is introduced to account for the fact that most machine elements and structures are not manufactured with the same high-quality finish that is normally given to laboratory fatigue test specimens.

DESIGNING AGAINST FATIGUE kb = Size factor Large engineering parts have lower fatigue strength than smaller test specimen Greater is the probability of finding metallurgical flaws that can cause crack initiation Following values can be taken as rough guidelines : kb = 1.0 for component diameters less than 10 mm kb = 0.9 for diameters in the range 10 to 50 mm kb = 1 – [( D – 0.03)/15], where D is diameter expressed in inches, for sizes 50 to 225 mm.

DESIGNING AGAINST FATIGUE kc = Reliability factor Accounts for random variation in fatigue strength. Published data on endurance limit, represent 50 % survival fatigue test. Since most design require higher reliability, the published data must be reduced by the factor of kc The following value can be taken as guidelines kc = 0.900 for 90% reliability kc = 0.814 for 99 % reliability kc = 0.752 for 99.9 % reliability

DESIGNING AGAINST FATIGUE kd = Operating temperature factor Accounts for the difference between the test temperature and operating temperature of the component For carbon and alloy steels, fatigue strength not affected by operating temperature – 45 to 4500C kd = 1 At higher operating temperature kd = 1 – 5800( T – 450 ) for T between 450 and 550oC, or kd = 1 – 3200( T – 840 ) for T between 840 and 1020oF

DESIGNING AGAINST FATIGUE ke = Loading factor Accounts for the difference in loading between lab. test and service. During service – vibration, transient overload, shock From experience show that repeated overstressing can reduce the fatigue life Different type of loading, give different stress distribution ke = 1 for application involving bending ke = 0.9 for axial loading ke = 0.58 for torsional loading

DESIGNING AGAINST FATIGUE kf = Stress concentration factor Accounts for the stress concentration which may arise when change in cross-section kf = endurance limit of notch-free part endurance limit of notched part Low strength, ductile steels are less sensitive to notched than high-strength steels

DESIGNING AGAINST FATIGUE kg = Service environment factor Accounts for the reduced fatigue strength due to the action of a hostile environment.

DESIGNING AGAINST FATIGUE kh = Manufacturing process factor Accounts for the influence of fabrication parameter Heat treatment, cold working, residual stresses and protective coating on the fatigue material. kh difficult to quantify, but important to included.

DESIGNING AGAINST FATIGUE Endurance limit/Fatigue strength The endurance limit, or fatigue strength, of a given material can usually be related to its tensile strength, as shown in table 2.2. The endurance ratio, defined as (endurance limit/ tensile strength), can be used to predict fatigue behavior in the absence of endurance limits results. From the table shows, endurance ratio of most ferrous alloys varies between 0.4 and 0.6

DESIGNING AGAINST FATIGUE Other fatigue-design criteria Safe-life or finite-life Design is based on the assumption that the component is free from flaws, but stress level in certain areas is higher than the endurance limit of the material Means that fatigue-crack initiation is inevitable and the life of the component is estimated on the number of stress cycles which are necessary to initiate crack

DESIGNING AGAINST FATIGUE Fail-safe design Crack that form in service will be detected and repaired before they can lead to failure. Employed material adapted with high fracture toughness, crack stopping features and reliable NDT program to detect crack. Damage-tolerant design Is an extension of fail-safe criteria and assume that flaws exist in the component before they put in service. Fracture mechanics techniques are used to determine whether such crack will grow large enough to cause failure before they are detected during periodic inspection.

DESIGNING AGAINST FATIGUE Selection of materials for fatigue resistance In many application, the behavior of a component in service is influence by several other factor besides the properties of the material used in its manufacture. This is particularly true for the cases where the component or structure is subjected to fatigue loading. The fatigue resistance can be greatly influenced by the service environment, surface condition of the part, method of fabrication and design details. In some cases, the role of the material in achieving satisfactory fatigue life is secondary to the above parameters, as long as the material is free from major flaws

DESIGNING AGAINST FATIGUE Steel and cast iron Steel are widely used as structural materials for fatigue application as they offer high fatigue strength and good processability at relatively low cost. The optimum steel structure for fatigue is tempered martensite, since it provide max homogeneity Steel with high hardenability give high strength with relatively mild quenching and hence, low residual stresses, which is desire in fatigue applications. Normalized structure, with their finer structure give better fatigue resistance than coarse pearlite structure obtained by annealing.

DESIGNING AGAINST FATIGUE Nonferrous alloys Unlike ferrous alloy, the nonferrous alloys, with the exception of titanium, do not normally have endurance limit. Aluminum alloys usually combine corrosion resistance, light weight, and reasonable fatigue resistance Fine grained inclusion-free alloys are most suited for fatigue applications.

DESIGNING AGAINST FATIGUE Plastics The viscoelasticity of plastics makes their fatigue behavior more complex than that of metals. Fatigue behavior of plastics is affected by the type of loading, small changes in temperature and environment and method of fabrication Because of their low thermal conductivity, hysteretic heating can build up in plastics causing them to fail in thermal fatigue or to function at reduces stiffness level. The amount of heat generated increases with increasing stress and test frequency. This means that failure of plastics in fatigue may not necessarily mean fracture

DESIGNING AGAINST FATIGUE Composite materials The failure modes of reinforced materials in fatigue are complex and can be affected by the fabrication process when difference in shrinkage between fibers and matrix induce internal stresses. However from practical experiences, some fiber reinforced plastics are known to perform better in fatigue than some metal, refer table 2.2. The advantage of fiber-reinforced plastics is even more apparent when compared on a per weight basics. As with static strength, fiber orientation affects the fatigue strength of fiber reinforced composite

DESIGNING AGAINST FATIGUE In unidirectional composites, the fatigue strength is significantly lower in directions other than the fiber orientation. Reinforcing with continuous unidirectional fibers is more effective than reinforcing with short random fibers.