Supernovae and GRB Connection Ken’ichi Nomoto (Univ. of Tokyo) MAGNUM (U. Tokyo)

Slides:



Advertisements
Similar presentations
E. Pian – LNGS, 13 Sep 2005 Elena Pian - INAF, Trieste Astronomical Observatory, Italy LNGS Summer Institute 2005 GRB: Modern Status.
Advertisements

Supernovae Josefine Selj, Dmitry Sharapov, Auni Somero, Linda Östman supervisor: Jesper Sollerman NORDFORSK Summer School on Observational Astrophysics.
The Flavours of SN II Light Curves Iair (“ya-eer”) Arcavi Advisor: Avishay Gal-Yam.
Supernovae Supernova Remnants Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear.
Metal Poor Stars Jeff Cummings Indiana University April 15, 2005.
From Progenitor to Afterlife Roger Chevalier SN 1987AHST/SINS.
Raffaella Margutti Harvard – Institute for Theory and Computation On behalf of the Harvard SN forensic team Kyoto2013 What happens when jets barely break.
Supernovae from Massive Stars: light curves and spectral evolution Bruno Leibundgut ESO.
ハイパーノバとブラックホール Hypernovae and Black Holes 野本憲一 (Nomoto, Ken’ichi) 前田啓一 (Maeda, Keiichi) 東京大学大学院理学系研究科天文学専攻 University of Tokyo, School of Science, Department.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
Engine-Driven Supernovae Alicia M. Soderberg Caltech Astronomy Dept. Zwicky Supernova Workshop January
Gamma-ray bursts Discovered in 1968 by Vela spy satellites
NASA's Chandra Sees Brightest Supernova Ever N. Smith et al. 2007, astro-ph/ v2.
A Radio Perspective on the GRB-SN Connection Alicia Soderberg May 25, 2005 – Zwicky Conference.
January 8, st AAS Meeting1 Nucleosynthesis, Pulsars, Cosmic Rays, and Shock Physics: High Energy Studies of Supernova Remnants with Chandra and.
Observed properties of SN From Woosley Lecture 16 See also Filippenko (1997; ARAA 35, 309) See also
Supernova PHYS390 Astrophysics Professor Lee Carkner Lecture 16.
A Broader Perspective on the GRB-SN Connection Alicia M. Soderberg Caltech Schramm Symposium, Dec
Collapse of Massive Stars A.MacFadyen Caltech. Muller (1999) “Delayed” SN Explosion acac Accretion vs. Neutrino heating Burrows (2001)
Supernovae Oscar Straniero INAF – Oss. Astr. di Collurania (TE)
1 Explosive nucleosynthesis in neutrino-driven, aspherical Pop. III supernovae Shin-ichiro Fujimoto (Kumamoto NCT, Japan) collaboration with M. Hashimoto.
The origin of the most iron - poor star Stefania Marassi in collaboration with G. Chiaki, R. Schneider, M. Limongi, K. Omukai, T. Nozawa, A. Chieffi, N.
「 Subaru UM 」 @ NAOJ, 30 Jan 2008 Supernovae are NOT spherical: The result from late-time spectroscopy by FOCAS “Asphericity in Supernova Explosions from.
Supernovae and Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear reactions involving.
Recent Observations of GRB-Supernovae Bethany Elisa Cobb The George Washington University IAU Symposium 279 March 13, 2012.
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
Subaru Users Meeting (January 15, 2009) Light-Echo Spectrum revealed types of Tycho Brahes’s 1572 & Cas A SNe Cas A Blue : X-ray (CXO) Green : Optical.
Dec. 6, Review: >8Msun stars become Type II SNe As nuclear burning proceeds to, finally, burning Silicon (Si) into iron (Fe), catastrophe looms.
SNLS-03D3bb Andy Howell University of Toronto and the Supernova Legacy Survey (SNLS)
Supernova study with BATC Sky Survey Wang Xiao-feng Physics Department and Tsinghua Center for Astrophysics, Tsinghua University 2005, 8, 12, Weihai.
Zorro and the nature of SNe Ia Paolo A. Mazzali Max-Planck Institut für Astrophysik, Garching Astronomy Department and RESearch Centre for the Early Universe,
Gamma-Ray Bursts Mano-a-Mano. Short bursts T
Different Kinds of “Novae” I. Super Novae Type Ia: No hydrogen, CO WD deflagration --> detonation Type Ia: No hydrogen, CO WD deflagration --> detonation.
5-9 Nov 2012Tsinghua Transient Workshop Light curves and Spectra.
Spectroscopic signatures of SN Ia progenitors A talk not about the Palomar Transient Factory Avishay Gal-Yam, Weizmann Institute of Science Leiden workshop.
Ay 123 Lecture 11 - Supernovae & Neutron Stars Timescales for HS Burning faster and faster..
Unraveling the Galaxy to Find the First Stars: Nucleosynthesis at Z = 0... Jason Tumlinson Yale Center for Astronomy and Astrophysics... or, how I learned.
Observational Properties and Modelling of Hypernovae Jinsong Deng National Astronomical Observatories of China Collaborators: P. A. Mazzali (Trieste Obs.
1 Chang-Hwan Spin of Stellar Mass Black Holes: Hypernova and BH Spin Correlation in Soft X-ray BH Binaries.
Progenitor stars of supernovae Poonam Chandra Royal Military College of Canada.
Antimatter in our Galaxy unveiled by INTEGRAL
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
The Exceptional GRB/XRF and its Associated SN 2006aj Jinsong Deng National Astronomical Observatories of China.
Gamma-Ray Bursts. Short (sub-second to minutes) flashes of gamma- rays, for ~ 30 years not associated with any counterparts in other wavelength bands.
Study of the type IIP supernova 2008gz Roy et al. 2011, MNRAS accepted.
The Upper Main Sequence O stars OBN and OBC stars Wolf-Rayet stars Meredith Danowski Astronomy 411 Feb. 14, 2007.
IFU studies of GRBs and SNe regions Lise Christensen (Excellence Cluster Universe, Technical University Munich) + Maryam Modjaz (NY), + Christina Thoene.
Death of sun-like Massive star death Elemental my dear Watson Novas Neutron Stars Black holes $ 200 $ 200$200 $ 200 $ 200 $400 $ 400$400 $ 400$400.
The monitoring of supernovae with the 6-meter telescope of SAO RAS
Supernova.
A photometric method to classify high-z supernovae found with HSC
Mariko KATO (Keio Univ., Japan) collaboration with
Supernova Panel Discussion
Supernovae and Gamma-Ray Bursts
N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo),
GRB-Supernova observations: State of the art
New Trends of Physics 2005, Hokkaido University, March 1
Formation of Dust in the Ejecta of Type Ia Supernovae
Supernova Nucleosynthesis and Extremely Metal-Poor Stars
Supernovae Josefine Selj, Dmitry Sharapov, Auni Somero, Linda Östman
Nucleosynthesis in Early Massive Stars: Origin of Heavy Elements
Center for Computational Physics
Nucleosynthesis in jets from Collapsars
Pop III Black-hole-forming supernovae and Abundance pattern of Extremely Metal Poor Stars Hideyuki Umeda (梅田秀之) Dept. of Astronomy Univ.of Tokyo.
Pair Instability Supernovae
Nucleosynthesis in Pop III, Massive and Low-Mass Stars
Formation and evolution of dust in hydrogen-poor supernovae
Supernova.
Presentation transcript:

Supernovae and GRB Connection Ken’ichi Nomoto (Univ. of Tokyo) MAGNUM (U. Tokyo)

Supernova Spectra (Maximum Light) ( Å ) log(Flux)

Hypernova Candidates E kinetic > (5-10)×10 51 ergs SNe Ic SNGRB 1998bw ef(971115) 2002ap 2003dh lw dq 1998ey 1992ar SN 1998bw GRB

Ia Ic Ib 94I 97ef 98bw He CaO SiII Hyper -novae Spectra of Supernovae & Hypernovae Hypernovae : broad features blended lines “Large mass at high velocities” Ic: no H, no strong He, no strong Si

Core Collapse SNe II -P –Single RG II n, II -L, II b –Close Binaries? I b, I c –Single WR –Close Binaries Hypernovae ( I c) ↔ Gamma-Ray Bursts –Rotating Single WR? (Helium) –Close Binary Mergers? (Mass of SN ejecta: Mej ?) Mass loss

SN1994I SN2006aj SN2003lw SN1997ef SN2002ap SN2003dh SN1998bw

56 Co-decay

Parameters [M ej, E, M( 56 Ni)] Si C+O He H-rich M C+O Fe Collapse 56 Ni 56 Co 56 Fe M ms /M  M C+O /M  ~ ~ ~ Light CurveSpectra  ~ [ dyn  diffusion ] 1/2 ~ R VR c  M ej 1/2   ½ M ej ¾ E -¼ E  M ej 3 E  M ej CO Star Models for SNeIc 56 Ni

Jet-like explosion Tominaga et al. 2005

M=25M , E=3×10 50 erg [Fe/H]= - 5.3 Mr (M  ) 0 -1-1 -2-2 -3-3 -4- He H C C O O N Ne Mg 56 Fe Ti 58 Ni Log X ejecta Fallback M BH ~6M  Umeda & Nomoto (2003) Mixing

Spectral Fitting: SN1997ef Normal SN (E 51 =1) Small M ej Hypernova (E 51 =20) Large M ej at High Vel. Too Narrow Features Broad Features Iwamoto et al. (2000) E 51 =E/10 51 erg

t (days) 98bw 94I 97ef Radioactive Decay 56 Ni 56 Co 56 Fe C+O Star Models 98bw97ef94I M ms (M  ) M C+O (M  ) E K (10 51 erg) M( 56 Ni) (M  ) log L (erg/s) Light curves of Hypernovae & SNeIc

GRB / SN 2003dh Hjorth et al (2003)

SN2003dh / GRB Deng et al. (2005)

SN2003lw / GRB Deng et al. (2005)

Supernova – GRB Connection GRBSNM CO /M  M ms /M  E/10 51 ergM( 56 Ni)/M  bw dh lw Three GRB - SNe = all Type Ic Hypernovae E > erg ( ~ 10×normal SN) Large M ms →Black Hole Forming SNe Aspherical

Very narrow lines. V < 1000 km s -1. E K =1-4×10 50 ergs. V~1000km s gd, 1999br Faint M( 56 Ni)~0.002M  Type II-P SN 1997D (Turatto, Mazzali, Young, Nomoto 2002)

SN Ⅱ 1997D: Faint SN Turatto, Mazzali, Young, Nomoto, Iwamoto et al. (1998) 1997D 1987A 1997D L BOL M ms ~20M  M ms ~ 25 - 30M  R ≤ 300R  M( 56 Ni) 0.07M  0.002M  m - M=30.64 (NGC1536) E~4×10 50 erg narrow lines

Hypernovae/Faint SNe EKEK Nomoto et al. (2003) Failed SN? 13M ☉ ~15M ☉ GRB-SN

Nomoto et al. (astro-ph/ ) GRB-SN Hypernovae/Faint SNe ( 56 Ni mass)

Non-GRB Hypernovae SNe 1997ef, 1999as, 2002ap, 2003jd MAGNUM (U. Tokyo)

Brightest Hypernova: E ~ 3×10 52 erg M ms ~ 60M  M CO ~ 20M  M( 56 Ni) ~ 5.4M  SN 1999as mag (Deng et al. ) ( Knop et al.)

SN1994I SN2006aj SN2003lw SN1997ef SN2002ap SN2003dh SN1998bw

SN 2003jd SN 1998bw SN 2002ap SN 2003jd SN 1983V

Spectra of SN2002ap 4M  C+O star (Mms ~ 25) (E = 4e51 erg) Mazzali et al. 2002

XRF060218SN2006 SN2006aj

SN1994I SN2006aj SN2003lw SN1997ef SN2002ap SN2003dh SN1998bw

Fe III, Fe II OI days since the explosion

Ca II IR triplet OI 7774 Si II 16 days since the explosion

Comparison with 02ap SN 2006aj (21 Feb 2006) SN 2002ap at z=0.033 Model 4Msun Model 2Msun OI 7774

SN 2006aj 13 days after the explosion (3 Mar 2006) CaII IR triplet OI 7774 SiII 6355 FeII, FeIII CrII, TiII Model 2 Msun 4 Msun

SN 2006aj

XRF / SN 2006aj Small Oxygen Mass < 1.3 M  M ej ~ 2 M  (M ms ~ 20 M  ) E ~ 2 x erg M( 56 Ni)~0.21M  Neutron Star forming SN ? Magnetar-driven XRF ? Mass Loss Rate ? Shell ? Cas A – connection ?

Non-GRB, peculiar SN Ib 2005bf MAGNUM (U. Tokyo)

SN Ib 2005bf: Spectra Tominaga et al He H feature

SN 2005bf: Observed Light Curves Tominaga et al Folatelli et a Modjaz et al. 2006

Comparison with other SN Ib/c

SN 2005bf: Abundance Distribution Mass Fraction Velocity [km/s] X( 56 Ni)=0.44 X( 56 Ni)=0.013 X( 56 Ni)=0.03 X(He)=0.44 1,6003,9005,400 Ni Si, O, C He H,He 13,000

Type Ib SN 2005bf Peculiar Light Curve –Double peaks : M( 56 Ni)~0.3M  –Slow rise to the 2nd peak (~40 days) –Rapid decline M ej ~ 6 – 7 M  (M ms ~ 25 – 30 M  ) E ~ 1.3 x erg Explosion of a WN star He, H features

Subaru FOCAS Obs. of SN 2005bf [O I ] ~10 days after the 2 nd peak. He indicated by [Ca I I ] [Fe I I ]?? HH

Unipolar Ejection of 56 Ni(Fe)? sym. axis [OI] 6300 [FeII] 7150 [CaII] 7300 O Ca Fe

SN 2005bf: Light Late Phases

Type Ib SN 2005bf Nebula Spectrum –[FeII], [CaII],[OI] : Blue shifted by ~1500 km/s –[OI] : Double peaks –Unipolar Jet ? –Kick ? (v ~ 200 – 600 km/s ?) Neutron Star Forming SN ?? - normal E, small mass cut, large M(Ni) Rapid decline of LC: 56 Ni decay ?? - Magnetar?? GRB connection??

First Star – Hypernova Connection: Abundance Patterns of Extremely Metal-Poor Stars

Metal Poor Stars Mega Metal Poor (MMP): [Fe/H] < -6 Hyper Metal Poor (HMP): [Fe/H] < -5 Ultra Metal Poor (UMP): [Fe/H] < -4 Extremely Metal Poor(EMP) : [Fe/H] < -3 Very Metal Poor (VMP): [Fe/H] < -2 Metal Poor (MP) : [Fe/H] < -1 Solar: [Fe/H] ~ 0 Super Metal Rich(SMR): [Fe/H] > +0.5 [Fe/H]=log(Fe/H)-log(Fe/H)  (Beers & Christlieb 2005)

Mn CoCr Zn trend McWilliam, Ryan [Fe/H]

Low energyHigh energy (1) M(Complete Si-burning) (Zn, Co)/Fe (Mn, Cr)/Fe Fe/(O, Si) (2) More  ‐ rich entropy Zn/Fe 64 Ge Ti/Fe (3) More O burns (Si, S, Ca)/O Hypernova Nucleosynthesis

Normal SNe vs H ypernovae than Normal SNe Hypernovae complete Si burning incomplete Si burning

Hyper Metal Poor star: HE Discovery : (Christrieb et al. 2002) Red-giant ~ 0.8 M  [Fe/H] ~ [C/Fe] ~ + 4 Pop III (first generation) or Second generation? Formation of Pop III low mass star?

Hyper Metal Poor (HMP) stars Iwamoto et al. (Science 2005)

First Supernovae [Fe/H] : Faint SNe Hypernovae Normal SNe Black-Hole Forming Supernovae (20-130M  ) ⇒ First Black Hole > 2~6M 

NameM ms E 51 M( 56 Ni) 1998bw dh lw ef ap bf aj A J I D br

Supernova – GRB Connection Mass – E (Rotation?) GRB-SN –Hypernovae (M > 30 M  ; E > 1 x erg) –Black hole forming –Type Ic: M(CO) ~ M  Non-GRB HN (off-axis ?) XRF-SN (M ms ~ 20 M  E ~ 2 x erg) Neutron Star forming ? Magnetar-driven Explosion? Peculiar SNe: (NS—BH boundary ?) First Star connection

Possible Types of SN-HN Type Ib Hypernova ? (Helium in mixed WR) Type II Hypernova ? –Rotating Black-Hole + H-rich Envelope (low metallicity?) Faint SN Ibc ? –Small 56 Ni (fallback) + No Shock Heating Faint Hypernovae (fallback of 56 Ni)  Dark SN/HN (Long GRB + no SN)