LBT AGW units Design Review Mar.2001 General Concept Performance specifications and goals The off-axis unit The mechanical support structure The control.

Slides:



Advertisements
Similar presentations
W Unit Opto-Mechanical Acceptance Test Specifications A.Tozzi, E.Pinna, S.Esposito FLAO system external review, Florence, 30/31 March 2009 FLAO_03 (CAN:
Advertisements

CMSC 2006 Orlando Active Alignment System for the LSST William J. Gressler LSST Project National Optical Astronomy Observatory (NOAO) Scott Sandwith New.
1 Keck LGS AO Planning Workshop: Overview, Requirements & Schedule December 5, 2004.
A First-Light AO system for LBT AGW Unit: a conceptual design S. Esposito, M. Accardo, C. Baffa, V. Biliotti, G. Brusa, M. Carbillet, D. Ferruzzi, L. Fini,
CHARA AO WFS Design JDM (+LS,MJI) 2012Sep06 v0.1 1.
LBT AO Progress Meeting, Arcetri Walter Seifert (ZAH, LSW) The LBT AO System and LUCIFER 1.Requirements for the commissioning of LUCIFER:
Laser guide star adaptive optics at the Keck Observatory Adam R. Contos, Peter L. Wizinowich, Scott K. Hartman, David Le Mignant, Christopher R. Neyman,
Na- Laser guide star AO with dynamical refocus
FLAO Alignment Procedures G. Brusa, S. Esposito FLAO system external review, Florence, 30/31 March 2009.
PILOT: Pathfinder for an International Large Optical Telescope -performance specifications JACARA Science Meeting PILOT Friday March 26 Anglo Australian.
GMT Phasing GLAO – not needed LTAO – Phase stabilization done at ~1kHz with edge sensing at M1 and M2 – Phase reference set at ~.01Hz using off-axis star.
NIR LOWFS for Keck and TMT Roger Smith & David Hale.
LGS WFS Design Status & Issues Dekany, Delacroix, & Velur Caltech Optical Observatories.
1 Laser Guide Star Wavefront Sensor Mini-Review 6/15/2015Richard Dekany 12/07/2009.
Keck Next Generation Adaptive Optics Team Meeting 6 1 Optical Relay and Field Rotation (WBS , ) Brian Bauman April 26, 2007.
PALM-3000 PALM-3000 Instrument Architecture Antonin Bouchez PALM-3000 Requirements Review November 12, 2007.
AO opto-mechanical design architectures Cost Impact Don Gavel NGAO Team Meeting #5 February 5, 2009.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
NGAO Alignment Plan See KAON 719 P. Wizinowich. 2 Introduction KAON 719 is intended to define & describe the alignments that will need to be performed.
2-Tier Layout (RK 11/20/07). 1-Tier Layout (RK 11/26/07)
LGS-AO Performance Characterization Plan AOWG meeting Dec. 5, 2003 A. Bouchez, D. Le Mignant, M. van Dam for the Keck AO team.
Agenda (Fri., June 7) 8:00AO UI Demonstration 9:00Introductions to AO team 9:05AOWG Chair Selection 9:15Review Agenda (make changes?) 9:20Review Planned.
Keck Laser Guide Star Adaptive Optics System: 1 st & 2 nd Milestones AOWG Telecon Oct. 17, 2003 A. Bouchez, J. Chin, A. Contos, S. Hartman, E. Johansson,
P. Wizinowich & D. Le Mignant for Keck AO Team AOWG – June 6, 2002 Keck AO Overview to support summit tour.
NGAO NGS WFS design review Caltech Optical Observatories 1 st April NGAO WFS design, Caltech Optical Observatories.
September 28, 2007LGS for SAM – PDR – Optics1 LGS for SAM Optical Alignment R.Tighe, A.Tokovinin. LGS for SAM Design Review September 2007, La Serena.
“Milliarcsecond imaging in the UV- Optical domains: Preparing the way to space borne Fresnel Imagers”, Nice, Sept INSTALLING A FRESNEL IMAGER.
AGW Control System Jesper Storm, Günter Möstl. This can be realized with Delta Tau's Macro (Motion And Control Ring Optical) system. It allows you to.
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
Corner Raft Test Station Kirk Arndt, Ian Shipsey Purdue University LSST Camera Workshop SLAC Sept , 2008.
MCAO Adaptive Optics Module Mechanical Design Eric James.
MCAO Adaptive Optics Module Subsystem Optical Designs R.A.Buchroeder.
B.Delabre November 2003ANGRA DOS REIS - BRAZIL ESO 2 nd GENERATION INSTRUMENTATION – OPTICAL DESIGNS ESO VLT SECOND GENERATION INSTRUMENTATION Optical.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
STATUS REPORT OF FPC SPICA Task Force Meeting March 29, 2010 MATSUMOTO, Toshio (SNU)
1 FRIDA Engineering Status 17/05/07 Engineering Status May 17, 2007 F.J. Fuentes InFraRed Imager and Dissector for Adaptive Optics.
PACS IIDR 01/02 Mar 2001 FPFPU Alignment1 D. Kampf KAYSER-THREDE.
Position sensing in Adaptive Optics Christopher Saunter Durham University Centre for Advanced Instrumentation Durham Smart Imaging.
Edimburg June 2006 Fast detectors 1 Fast detectors (for E-ELT AO) Philippe Feautrier INSU/CNRS-LAOG.
The AO system for the GTC -an update Nicholas Devaney, Dolores Bello, Bruno Femenía, Alejandro Villegas, Javier Castro Grantecan, Instituto de Astrofísica.
1 Palomar Tomograph V. Velur 1, B. Platt 2, M. Britton 1, R. Dekany 1 1 Caltech Optical Observatories, California Institute of Technology 2 Interferometry.
Telescope Integration and Tests Tuesday Afternoon.
Lyot Stop Focal Plane Mask OAP3 Out of plane spherical mirror.
FLAO system test plan in solar tower S. Esposito, G. Brusa, L. Busoni FLAO system external review, Florence, 30/31 March 2009.
NORDFORSK Summer School, La Palma, June-July 2006 NOT: Telescope and Instrumentation Michal I. Andersen & Heidi Korhonen Astrophysikalisches Institut Potsdam.
1 1 st Light AO 4 LBT Pyramid WFS Adaptive Secondary MMT Unit.
The Hobby-Eberly Telescope Mirror Alignment Recovery System Marsha Wolf Graduate Student UT Astronomy Department.
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
1 Virgo Commissioning progress ILIAS, Nov 13 th 2006 Matteo Barsuglia on behalf of the Commissioning Team.
K. G. Strassmeier, Polarimetry with ELTs, Utrecht, Nov./Dec Smart Focal Plane Spectropolarimetry with the E-ELT Klaus G. Strassmeier, Leibniz-Institute.
The Prime Focus Imaging Spectrograph Design and Capabilities
The Active Optics System S. Thomas and the AO team.
Henry Heetderks Space Sciences Laboratory, UCB
FLAO_01: FLAO system baseline & goal performance F. Quirós-Pacheco, L. Busoni FLAO system external review, Florence, 30/31 March 2009.
Binospec - Next Generation Optical Spectrograph for the MMT
Solar orbiter_______________________________________________.
Page 1 Adaptive Optics in the VLT and ELT era Wavefront sensors, correctors François Wildi Observatoire de Genève.
Some Thoughts on Ground Layer Adaptive Optics & Adaptive Secondary Mirrors for Keck P. Wizinowich 9/15/14 1.
Pre-focal wave front correction and field stabilization for the E-ELT
Science with Giant Telescopes - Jun 15-18, Instrument Concepts InstrumentFunction range (microns) ResolutionFOV GMACSOptical Multi-Object Spectrometer.
Wide field telescope using spherical mirrors Jim Burge and Roger Angel University of Arizona Tucson, AZ Jim
Astronomical Observational Techniques and Instrumentation
Robo-AO Overview: System, capabilities, performance Christoph Baranec (PI)
Charts for TPF-C workshop SNR for Nulling Coronagraph and Post Coron WFS M. Shao 9/28/06.
The Field Camera Unit Results from technical meeting S. Scuderi INAF – Catania.
1 A First-Light AO system for LBT AGW Unit: a conceptual design S. Esposito, M. Accardo, C. Baffa, V. Biliotti, G. Brusa, M. Carbillet, D. Ferruzzi, L.
1# 3-D Morphology of V723 Cas Nova Ejecta KeckII+LGSAO+OSIRIS Randy Campbell and Jim Lyke Hα images from Classical Novae, ed. Bode and Evans, Ch 12, O’Brien.
Keck Observatory Status
Photon counting CCDs as wavefront sensors for LBT A.O. systems
NGS AO Control Light from Telescope Telescope pointing offload
Presentation transcript:

LBT AGW units Design Review Mar.2001 General Concept Performance specifications and goals The off-axis unit The mechanical support structure The control system, electronics/software The on-axis AO system

Goals for this meeting Prepare list of modifications (off- axis) Freeze off-axis design Discuss on-axis AO design Can we proceed w. outer structure and/or baseplate? Prepare tentative timetable for design and review

Performance specs & goals Baseline Science FOV 4'x4' Guiding (seeing limit) AO (diff. AO w. optical light reflected off 15deg inclined entrance window Operating temperature range -5 to +15C w. possibly degraded performance -20 to -5C and +15 to +25C Performance maintained for dT/dt < 1deg/h Performance maintained over 30deg rotation of derotator

Performance specs & goals Off-axis system centroid to 1/10x0.4=0.04arcsec Camera FOV >20arcsec, patrol area > 15sq.arcmin On-axis access for acquisition WFS on natural stars for active optics (>10sec) WFS w. 4x4 and 12x12 Shack-Hartmann lenslet arrays Guider camera provides high res. curvature sensing

Performance specs & goals On-axis tip-tilt system Tip-tilt camera FOV > 1' Tip-tilt signal > 100Hz APD (STRAP) instead of CCD...

Performance specs & goals On-axis WFS system WFS on natural and sodium laser (589nm) reference stars WFS signals at >100Hz Pyramid/SH sensor? Atmospheric Dispersion Corrector? Filter wheel?

Performance specs & goals Control system CCDs running over SDSU GenII controllers Industry standard computers VxWorks environment TCP/IP, RPC (remote procedure call) interfaces 120V 60Hz UPS powered

The off-axis unit Optical layout Guider camera w. focal reducer (x2), 22x22" FOV Patrol field 18 sq. arcmin 98% chance of finding R<18mag guidestar (1Hz guiding) Filterwheel Keep FM4 small for stability and vignetting (<50mm) Shack-Hartmann WFS 2 lenslet arrays 4x4 and 12x12 lenslets 1.9mm pupils 2 pinholes and collimators Dichroic reflects red light into WFS arm

The off-axis unit Mechanical layout X  stage for patrol Common focus stage for the cameras Optics separate from unit Shack-Hartmann WFS 2 lenslet arrays 4x4 and 12x12 lenslets 2 pinholes and collimators Dichroic reflects red light into WFS arm

The off-axis unit Mechanical tolerances IQ better than 1/10th of the seeing limit: 0.4arcsec Platescale 1.67"/mm gives about 0.025mm tolerance w. respect to science focal plane In X and theta we then have 0.013mm tolerance Tilt of FM4 less than 5 arcsec Tilt of complete unit less than 10 arcsec Positioning better than 0.1arcsec (0.06mm) Focus range +-20mm (focal plane curvature=+-10mm)

The off-axis unit Detectors  Guiding 512x1k frame-trans. Marconi mm/pix, 0.04"/pix QE: 45% at 700nm RON: 20kHz : 2e-; 1MHz: 6e- Dark 1e-/s/pix at -60C 0.03 e-/s/pix at -80C Shutter less  Wavefront Sensing 512x1k frame-trans. Marconi " FOV, 4x4 SH sensor: 0.08"/pix 12x12 SH sensor: 0.25"/pix Steward dewars for both CCDs Cooling critical for >30s exp.

The mechanical support structure Connects derotator w. instrument FE analysis of different truss designs Within 0.055mm shift, well within 0.2mm tolerance Stress analysis looks fine Baseplate stability driven by tip- tilt camera (mass) FE analysis of opto-mechanical system in progress Image motion < mm =0.04" over 60deg turn Still to be optimized Steel structure

The control system VME+PMAC2-UltraLite Macro fiber optic link UMAC local control unit (3U Eurocard format) Very few connectors! VME-VxWorks interface Stepper motors 12 axes total Encoders on position stages Brakes on position stages Power switched off while observing Single wire Temp. and humidity sensing system

The on-axis AO system tip-tilt camera Most critical mechanical stability, drives mechanical design High speed essential as tip-tilt error dominates budget APDs superior to CCDs at low light level (no RON) 10mu gap = 0.1" gap in present camera, too big, pyramid? STRAP unit w. VME local control unit (big+15m limit)

The on-axis AO system wavefront sensor Shack-Hartmann or Pyramid or curvature? Pyramid gains almost 2mag for natural guidestar Can the pyramid be made to specs? Is the actuated mirror rugged enough? System analysis needed to establish requirements 80x80 frame-transfer Marconi CCD mm pix, quad read QE=90% at 500nm RON: 3e- at 20kHz 7e- at 1MHz Dark: 8e-/s/pix at -60C 0.2e-/s/pix at -80C