6.5.2008 Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt.

Slides:



Advertisements
Similar presentations
Model Checking Lecture 4. Outline 1 Specifications: logic vs. automata, linear vs. branching, safety vs. liveness 2 Graph algorithms for model checking.
Advertisements

Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
Representing Boolean Functions for Symbolic Model Checking Supratik Chakraborty IIT Bombay.
M ODEL CHECKING -Vasvi Kakkad University of Sydney.
BDDs & Theorem Proving Binary Decision Diagrams Dr. Eng. Amr T. Abdel-Hamid NETW 703 Winter 2012 Network Protocols Lectures are based on slides by: K.
Planning based on Model Checking Dept. of Information Systems and Applied CS Bamberg University Seminar Paper Svetlana Balinova.
An Introduction to the Model Verifier verds Wenhui Zhang September 15 th, 2010.
CS357 Lecture: BDD basics David Dill 1. 2 BDDs (Boolean/binary decision diagrams) BDDs are a very successful representation for Boolean functions. A BDD.
IT University of Copenhagen Lecture 7: BDD Construction and Manipulation 1. BDD construction 2. Boolean operations on BDDs 3. BDD-Based configuration.
Qualitätssicherung von Software (SWQS) Prof. Dr. Holger Schlingloff Humboldt-Universität zu Berlin und Fraunhofer FOKUS : Modellprüfung II - BDDs.
SYMBOLIC MODEL CHECKING: STATES AND BEYOND J.R. Burch E.M. Clarke K.L. McMillan D. L. Dill L. J. Hwang Presented by Rehana Begam.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
Review of topics Final exam : -May 2nd to May 7 th - Projects due on May 7th.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
© 2011 Carnegie Mellon University Binary Decision Diagrams Part Bug Catching: Automated Program Verification and Testing Sagar Chaki September.
© 2011 Carnegie Mellon University Binary Decision Diagrams Part Bug Catching: Automated Program Verification and Testing Sagar Chaki September.
DATE-2002TED1 Taylor Expansion Diagrams: A Compact Canonical Representation for Symbolic Verification M. Ciesielski, P. Kalla, Z. Zeng B. Rouzeyre Electrical.
ECE Synthesis & Verification - Lecture 18 1 ECE 697B (667) Spring 2006 ECE 697B (667) Spring 2006 Synthesis and Verification of Digital Systems Word-level.
A New Approach to Structural Analysis and Transformation of Networks Alan Mishchenko November 29, 1999.
 2001 CiesielskiBDD Tutorial1 Decision Diagrams Maciej Ciesielski Electrical & Computer Engineering University of Massachusetts, Amherst, USA
IT University of Copenhagen Lecture 8: Binary Decision Diagrams 1. Classical Boolean expression representations 2. If-then-else Normal Form (INF) 3. Binary.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
Fast Spectral Transforms and Logic Synthesis DoRon Motter August 2, 2001.
Digitaalsüsteemide verifitseerimise kursus1 Formal verification: BDD BDDs applied in equivalence checking.
Binary Decision Diagrams (BDDs)
Model Checking Lecture 4 Tom Henzinger. Model-Checking Problem I |= S System modelSystem property.
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
CS 267: Automated Verification Lecture 6: Binary Decision Diagrams Instructor: Tevfik Bultan.
Algorithmic Software Verification V &VI. Binary decision diagrams.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
Daniel Kroening and Ofer Strichman 1 Decision Procedures An Algorithmic Point of View BDDs.
Four Lectures on Model Checking Tom Henzinger University of California, Berkeley.
1 P P := the class of decision problems (languages) decided by a Turing machine so that for some polynomial p and all x, the machine terminates after at.
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
On the Relation between SAT and BDDs for Equivalence Checking Sherief Reda Rolf Drechsler Alex Orailoglu Computer Science & Engineering Dept. University.
Daniel Kroening and Ofer Strichman 1 Decision Procedures An Algorithmic Point of View BDDs.
- 1 -  P. Marwedel, Univ. Dortmund, Informatik 12, 05/06 Universität Dortmund Validation - Formal verification -
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
Binary decision diagrams (BDD’s) Compact representation of a logic function ROBDD’s (reduced ordered BDD’s) are a canonical representation: equivalence.
Bounded Model Checking A. Biere, A. Cimatti, E. Clarke, Y. Zhu, Symbolic Model Checking without BDDs, TACAS’99 Presented by Daniel Choi Provable Software.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
CIS 540 Principles of Embedded Computation Spring Instructor: Rajeev Alur
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer.
Basic concepts of Model Checking
SS 2017 Software Verification Timed Automata
SS 2017 Software Verification Bounded Model Checking, Outlook
Planning as model checking, (OBDDs)
Software Verification 2 Automated Verification
SS 2017 Software Verification LTL monitoring
ECE 667 Synthesis and Verification of Digital Systems
Propositional Calculus: Boolean Algebra and Simplification
SS 2018 Software Verification LTL Satisfiability applied
SS 2017 Software Verification CTL model checking, BDDs
SS 2017 Software Verification Tableaus, CTL model checking
Software Verification 2 Automated Verification
NP-Completeness Proofs
Software Verification 2 Automated Verification
Binary Decision Diagrams
Software Verification 2 Automated Verification
Formal Methods in software development
CSCI1600: Embedded and Real Time Software
PROPOSITIONAL LOGIC - SYNTAX-
Presentation transcript:

Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für Rechnerarchitektur und Softwaretechnik

Slide 2 H. Schlingloff, Logical Specification Boolean Normal Forms DNF, CNF, NAND-, NOR-normal form  (p|q)=(p  ¬q); ¬p =(p|p); (p  q)= (p| ¬ q)  used for gate arrays Algebraic normal form  XOR of conjunction of (positive) propositions later: tree normal forms  (ordering of propositions)

Slide 3 H. Schlingloff, Logical Specification Boolean Modelling of Reactive Systems (Parallel) transition systems, shared variables programs  shared variables program (V,D,T,s 0 ) - V=(v 1,…,v n ) is a set (sequence) of program variables - D=(D 1,…,D n ) is a tuple of corresponding finite domains D i ={d i1,…,d im } - T  D  D is a transition relation, and - s 0 = (d 11,…,d n1 ) is the initial state Propositional representation of programs  T=((request=true)  (state=ready)  (state‘=busy)) Representation of non-boolean domains?

Slide 4 H. Schlingloff, Logical Specification Binary Encoding of Domains Any variable on a finite domain D can be replaced by log(D) binary variables  similar to encoding of data types by compilers  e.g. var v: {0..15} can be replaced by var v1,v2,v3,v4: boolean (0=0000, 1= 0001, 2=0010, 3=0011,..., 15=1111) State space  still in the order of original domain!  e.g. three int8-variables can have 2 24 =10 8 states  e.g. array of length 10 with 10-bit values  states Representation of large sets of states?

Slide 5 H. Schlingloff, Logical Specification Representation of Sets

Slide 6 H. Schlingloff, Logical Specification Ordered Tree Form Normal form for propositional formulas Uses only the connective Ite Linear ordering on the set of propositions  e.g., most significant bit first Shannon expansion

Slide 7 H. Schlingloff, Logical Specification Truth table and tree form formula Reduction: Replace Ite (v,ψ,ψ) by ψ

Slide 8 H. Schlingloff, Logical Specification Abbreviations Introduce abbreviations maximally abbreviated

Slide 9 H. Schlingloff, Logical Specification Binary Decision Trees (BDTs) Binary decision tree Elimination of isomorphic subtrees (abbreviations)

Slide 10 H. Schlingloff, Logical Specification Binary Decision Diagrams (BDDs) Elimination of redundant nodes (redundant subformulas) Ite (v,ψ,ψ) by ψ

Slide 11 H. Schlingloff, Logical Specification A Toy Example How many states are reachable? How to check whether a given state is reachable?

Slide 12 H. Schlingloff, Logical Specification Coding in nuSMV

Slide 13 H. Schlingloff, Logical Specification Coding in SMV (cont.) SMV quickly finds a solution (rrddlluurrddlluurrddlluurrdd)

Slide 14 H. Schlingloff, Logical Specification Another Toy Example gibts vielleicht noch besser (color)

Slide 15 H. Schlingloff, Logical Specification Verification Model of Shift Register

Slide 16 H. Schlingloff, Logical Specification Non-toy Examples Software verification: Correctness of aerospace and train computers, automobile controllers, nontrivial search problems,... Hardware verification: ALUs, PLAs, memory controllers, complete chip design,... For safety-critical systems formal validation is mandatory, for widely deployed systems highly recommended

Slide 17 H. Schlingloff, Logical Specification Calculation of BDDs

Slide 18 H. Schlingloff, Logical Specification The Influence of Variable Ordering Heuristics: keep dependent variables close together!

Slide 19 H. Schlingloff, Logical Specification Transitive Closure Each finite (transition) relation can be represented as a boolean formula / BDD The transitive closure of a relation R is defined recursively by Thus, transitive closure be calculated by an iteration on BDDs Logical operations ( , ,  ) can be directly performed on BDDs

Slide 20 H. Schlingloff, Logical Specification Reachability State s is reachable iff s 0 R*s, where s 0  S 0 is an initial state and R is the transition relation Reachability is one of the most important properties in verification  most safety properties can be reduced to it  in a search algorithm, is the goal reachable? Can be arbitrarily hard  for infinite state systems undecidable Can be efficiently calculated with BDDs

Slide 21 H. Schlingloff, Logical Specification Intuitively, xR*y iff there is a sequence w 0 w 1... w n of nodes connecting x with y  In a finite model, this sequence must be smaller than the number of states.  In practice, usually a few dozen steps are sufficient