1/14 Ad Hoc Networking, 3.2.2004 Eli M. Gafni and Dimitri P. Bertsekas Distributed Algorithm for Generating Loop-free Routes in Networks With Frequently.

Slides:



Advertisements
Similar presentations
Computer Network Topologies
Advertisements

Mitigating Routing Misbehavior in Mobile Ad-Hoc Networks Reference: Mitigating Routing Misbehavior in Mobile Ad Hoc Networks, Sergio Marti, T.J. Giuli,
Data and Computer Communications
Mobile and Wireless Computing Institute for Computer Science, University of Freiburg Western Australian Interactive Virtual Environments Centre (IVEC)
BY PAYEL BANDYOPADYAY WHAT AM I GOING TO DEAL ABOUT? WHAT IS AN AD-HOC NETWORK? That doesn't depend on any infrastructure (eg. Access points, routers)
A Distributed Algorithm for the Dead End Problem of Location Based Routing in Sensor Networks Le Zou, Mi Lu, Zixiang Xiong, Department of Electrical Engineering,
Data and Computer Communications Ninth Edition by William Stallings Chapter 12 – Routing in Switched Data Networks Data and Computer Communications, Ninth.
Routing: Cores, Peers and Algorithms
Fault Tolerant Routing in Tri-Sector Wireless Cellular Mesh Networks Yasir Drabu and Hassan Peyravi Kent State University Kent, OH
CSE University of Washington Multipath Routing Protocols in AdHoc Networks.
Mobile and Wireless Computing Institute for Computer Science, University of Freiburg Western Australian Interactive Virtual Environments Centre (IVEC)
Mobile and Wireless Computing Institute for Computer Science, University of Freiburg Western Australian Interactive Virtual Environments Centre (IVEC)
Mobile and Wireless Computing Institute for Computer Science, University of Freiburg Western Australian Interactive Virtual Environments Centre (IVEC)
Mobile and Wireless Computing Institute for Computer Science, University of Freiburg Western Australian Interactive Virtual Environments Centre (IVEC)
Mesh Networks A.k.a “ad-hoc”. Definition A local area network that employs either a full mesh topology or partial mesh topology Full mesh topology- each.
Networking Theory (Part 1). Introduction Overview of the basic concepts of networking Also discusses essential topics of networking theory.
Highly Dynamic Destination- Sequenced Distance-Vector Routing (DSDV) for Mobile Computers C. E. Perkins & P. Bhagwat Presented by Paul Ampadu.
Mobile and Wireless Computing Institute for Computer Science, University of Freiburg Western Australian Interactive Virtual Environments Centre (IVEC)
1 Spring Semester 2007, Dept. of Computer Science, Technion Internet Networking recitation #5 Mobile Ad-Hoc Networks TBRPF.
Spring Routing & Switching Umar Kalim Dept. of Communication Systems Engineering 06/04/2007.
A Distance Routing Effect Algorithm for Mobility (DREAM)* Stefano Basagni Irnrich Chlamtac Violet R. Syrotiuk Barry A. Woodward.
TORA : Temporally Ordered Routing Algorithm Invented by Vincent Park and M.Scott Corson from University of Maryland. TORA is an on-demand routing protocol.
CS401 presentation1 Effective Replica Allocation in Ad Hoc Networks for Improving Data Accessibility Takahiro Hara Presented by Mingsheng Peng (Proc. IEEE.
1 25\10\2010 Unit-V Connecting LANs Unit – 5 Connecting DevicesConnecting Devices Backbone NetworksBackbone Networks Virtual LANsVirtual LANs.
A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Networks Research Paper By V. D. Park and M. S. Corson.
Capacity of Wireless Mesh Networks: Comparing Single- Radio, Dual-Radio, and Multi- Radio Networks By: Alan Applegate.
Chapter 12 Routing in Switched Networks. Routing in Packet Switched Network  key design issue for (packet) switched networks  select route across network.
Mobile Routing protocols MANET
1 A Mutual Exclusion Algorithm for Ad Hoc Mobile networks Presentation by Sanjeev Verma For COEN th Nov, 2003 J. E. Walter, J. L. Welch and N. Vaidya.
Mobile Adhoc Network: Routing Protocol:AODV
Leader Election Algorithms for Mobile Ad Hoc Networks Presented by: Joseph Gunawan.
Wireless Ad-Hoc Networks
Presented by Fei Huang Virginia Tech April 4, 2007.
MARCH : A Medium Access Control Protocol For Multihop Wireless Ad Hoc Networks 성 백 동
Network and Communications Ju Wang Chapter 5 Routing Algorithm Adopted from Choi’s notes Virginia Commonwealth University.
The Destination Sequenced Distance Vector (DSDV) protocol
CSCI 465 D ata Communications and Networks Lecture 15 Martin van Bommel CSCI 465 Data Communications & Networks 1.
A Novel Multicast Routing Protocol for Mobile Ad Hoc Networks Zeyad M. Alfawaer, GuiWei Hua, and Noraziah Ahmed American Journal of Applied Sciences 4:
Data Communications and Networking Chapter 11 Routing in Switched Networks References: Book Chapters 12.1, 12.3 Data and Computer Communications, 8th edition.
WIRELESS AD-HOC NETWORKS Dr. Razi Iqbal Lecture 6.
DISTRIBUTED SYSTEMS II A POLYNOMIAL LOCAL SOLUTION TO MUTUAL EXCLUSION Prof Philippas Tsigas Distributed Computing and Systems Research Group.
SRL: A Bidirectional Abstraction for Unidirectional Ad Hoc Networks. Venugopalan Ramasubramanian Ranveer Chandra Daniel Mosse.
TELE202 Lecture 6 Routing in WAN 1 Lecturer Dr Z. Huang Overview ¥Last Lecture »Packet switching in Wide Area Networks »Source: chapter 10 ¥This Lecture.
CSE 461 University of Washington1 Topic How do we connect nodes with a switch instead of multiple access – Uses multiple links/wires – Basis of modern.
Mobile and Wireless Computing Institute for Computer Science, University of Freiburg Western Australian Interactive Virtual Environments Centre (IVEC)
A Framework for Reliable Routing in Mobile Ad Hoc Networks Zhenqiang Ye Srikanth V. Krishnamurthy Satish K. Tripathi.
Spring 2000CS 4611 Routing Outline Algorithms Scalability.
Chapter 1 : Computer Networks.
Load Balanced Link Reversal Routing in Mobile Wireless Ad Hoc Networks Nabhendra Bisnik, Alhussein Abouzeid ECSE Department RPI Costas Busch CSCI Department.
Fair and Efficient multihop Scheduling Algorithm for IEEE BWA Systems Daehyon Kim and Aura Ganz International Conference on Broadband Networks 2005.
Distance Vector Routing
Placing Relay Nodes for Intra-Domain Path Diversity Meeyoung Cha Sue Moon Chong-Dae Park Aman Shaikh Proc. of IEEE INFOCOM 2006 Speaker 游鎮鴻.
COMPUTER NETWORKS CS610 Lecture-17 Hammad Khalid Khan.
Asstt. Professor Adeel Akram. Other Novel Routing Approaches Link reversal Aimed for highly dynamic networks Goal: to identify some path, as opposed.
William Stallings Data and Computer Communications
GeoTORA: A Protocol for Geocasting in Mobile Ad Hoc Networks
Author:Zarei.M.;Faez.K. ;Nya.J.M.
Network Layer.
Sensor Network Routing
Routing: Distance Vector Algorithm
任課教授:陳朝鈞 教授 學生:王志嘉、馬敏修
Temporally-Ordered Routing Algorithm (TORA)
Routing in Packet Networks Shortest Path Routing
COS 561: Advanced Computer Networks
Data and Computer Communications
Effective Replica Allocation
GENI Summer Camp Project Resilient Networks with DAG
PRESENTATION COMPUTER NETWORKS
DSDV Destination-Sequenced Distance-Vector Routing Protocol
Virtual LAN (VLAN).
Presentation transcript:

1/14 Ad Hoc Networking, Eli M. Gafni and Dimitri P. Bertsekas Distributed Algorithm for Generating Loop-free Routes in Networks With Frequently Changing Topology IEEE Transactions on Communications, vol. Com-29, no. 1, Jan 1981 Ah Hoc Networking Lasse Leppänen

2/14 Ad Hoc Networking, Contents 1.Introduction 2.A Problem on Acyclic Directed Graphs 3.Two Algorithms for Solving Problem 4.A general Class of Algorithms 5.Conclusions

3/14 Ad Hoc Networking, Introduction (1/2) The idea of ad hoc networking is not so new. Already in the beginning of 80’s researchers were talking about mobile packet radio (PR) networks. In such networks, it is necessary to use intermediate nodes as repeaters to transfer a message from source to destination. => Routing problem. Most of the routing schemes considered for PR networks involve the use of central station (CS). Collecting information of network connectivity. Set up routes. One possibility is to use shortest path algorithms. In this paper, a shortest path algorithm is assumed to use to determine primary routes. It is assumed that each node has a primary route to CS. Central station have to be informed of the topological changes. Each node send information to CS immediately. => Great deal of information if topological changes are frequent. Node can take a time before sending information. => Reduction of messages if topological changes are temporary.

4/14 Ad Hoc Networking, Introduction (2/2) Primary routes can be affected by topology changes. => Finding alternate route. With wired NW flooding can be used in failure situation. With PR network flooding is quite unsuitable, because of collisions. So it is necessary to use a contingency routing algorithm to cope effectively with topological changes. Desirable properties for contingency algorithm: 1. It should provide some redundancy in the form of additional routes to reduce the frequency with any node will lose all its routes to CS. 2. It should not rely on instructions from the CS in establishing new routes when all existing routes of any node fail. 3. It should not employ flooding or create serious problems due to collisions. 4. It must ensure that each route is loop-free at all times. 5. It must be capable of incorporating awakened links into existing routes with little communication overhead.

5/14 Ad Hoc Networking, A Problem on Acyclic Directed Graphs (1/2) Terminology: Directed graph is acyclic if it contains no directed cycle. ADG is destination oriented if there exists a directed path from every node to the destination node. Otherwise, ADG is destination disoriented. Connected ADG is destination disoriented if there exists a node other than the destination that have no outgoing link. In this paper the following problem is considered: Transform a destination disoriented ADG to destination oriented ADG by reversing the direction of some links. Problem is closely related to the contingency routing problem if destination is associated with the central station.

6/14 Ad Hoc Networking, A Problem on Acyclic Directed Graphs (2/2) Any communication link has a direction and messages can be send in this direction only. If resulting directed graph has no direction cycles and it is destination oriented, then every link is the part of a route leading to the destination. Each node may have several downstream links. If due to topological changes some node will be left without downstream neighbor, ADG has become destination disoriented. => Direction of some links has to be reversed. There is large number of algorithms that solve the problem, e.g. using assign positive weights on all links and use a shortest path algorithms. In this paper problem is not only solved but the algorithm has also the desirable properties discussed earlier.

7/14 Ad Hoc Networking, Two Algorithms for Solving Problem (1/4) In this paper, two algorithms are introduced. I Full Reversal Method At each iteration each node other than the destination that has no outgoing link reverses the direction of all its incoming links. II Partial Reversal Method Every node than destination keeps a list of its neighboring nodes that have reversed the direction of the corresponding links. At each iteration each node that has no outgoing link reverses the directions of the links which do not appear on the list.

8/14 Ad Hoc Networking, Two Algorithms for Solving Problem (2/4) Example1: Full Reversal Method D R 1 st iteration D R 2 nd iteration D R 3 rd iteration R D R 4 th iteration D 5 th iteration R R

9/14 Ad Hoc Networking, Two Algorithms for Solving Problem (3/4) Example2: Partial Reversal Method D R 1 st iteration D R 2 nd iteration D R 3 rd iteration R D R 4 th iteration D 5 th iteration

10/14 Ad Hoc Networking, Two Algorithms for Solving Problem (4/4) Both examples are extreme because they require a large number of reversals. In typical situation in most networks (particularly with relatively high connectivity) the reversal process not require a long chain of iterations and process is done infrequently. Both algorithms: 1. If the graph is connected, the reversal process will terminate after a finite number of iterations. 2. The directed graph generated at each iteration is acyclic. 3. The direction of any link that have a direct path to the destination in the initial ADG will never be reversed. Algorithms allows also the addition of new directed links in an ADG without forming a cycle.

11/14 Ad Hoc Networking, A General Class of Algorithms The two algorithms presented are representative of a general class of algorithms for given problem, which are based on a generalized numbering system. In this chapter two propositions are given: 1. Regardless of the timing and order of reversals the same final destination oriented ADG will be obtained within a finite number of iterations. 2. A node that lies on a directed path to the destination in the initial ADG essentially will not participate in the algorithm. Both propositions are proven in the appendix of the paper.

12/14 Ad Hoc Networking, Summary (1/2) Proposed algorithms form the basis for developing contingency algorithms for mobile PR networks with central station. Each node has a generalized number and the directions of links are always from higher to lower number. Numbers preclude the formation of loops and provide reliable secondary routes to the destination (central station). Some practical issues have to be resolved before these algorithms can be implemented in real networks, e.g. Error detection to ensure that each node operates on the basis of correct numbers for all its neighbors. Some numbers can become too large during the algorithm process. It is interesting to compare the algorithms with distributed shortest path algorithms based on minimum number of hops. Algorithms in this paper do not guarantee the generation of shortest paths.

13/14 Ad Hoc Networking, Summary (2/2) They offer two substantial advantages: Because of the multiplicity of available routes the contingency algorithm will be activated rarely when a node loses all its routes. Nodes that have not lost all its available routes do not participate in the reversal process or communication exchange (proposition2). In order to awake a new link no direction reversals or communication will be necessary. Algorithms guarantee loop freedom of generated routes at all time. This is not the case for some of the distributed shortest path algorithms, e.g. the original ARPANET algorithm.

14/14 Ad Hoc Networking, Thank you for your attention!