25.06.08 Fragment formation of nuclei and hypernuclei within a combined BUU+SMM model T. Gaitanos, H. Lenske, U. Mosel Introduction Outline.

Slides:



Advertisements
Similar presentations
Zi-Wei Lin (ECU) 28th WWND, Puerto Rico April 10, Update of Initial Conditions in A Multiple Phase Transport (AMPT) Model Zi-Wei Lin Department.
Advertisements

Marcus Bleicher, Berkeley, Oct Elliptic Flow in High Energetic Nuclear Collisions Marcus Bleicher & Xianglei Zhu FIAS & Institut für Theoretische.
Production of light anti-nuclei, hyper-antinuclei, and their characteristics in high-energy nuclear collisions Gang Chen, Huan Chen China University of.
Phase transition of hadronic matter in a non-equilibrium approach Graduate Days, Frankfurt, , Hannah Petersen, Universität Frankfurt.
First Results From a Hydro + Boltzmann Hybrid Approach DPG-Tagung, Darmstadt, , Hannah Petersen, Universität Frankfurt.
X. Dong 1 May 10, 2010 NSD Monday Morning Meeting First Observation of an Anti-Hypernucleus Xin Dong for the STAR Collaboration Science 328, 58 (2010)
EURISOL workshop, ECT* Trento, Jan Two-component (neutron/proton) statistical description of low-energy heavy-ion reactions E. Běták & M.
Preliminary results from a study of isospin non-equilibrium E. Martin, A. Keksis, A. Ruangma, D. Shetty, G. Souliotis, M. Veselsky, E. M. Winchester, and.
Transport phenomena in heavy-ion reactions Lijun Shi NSCL MSU and Physics Department, McGill University Catania, Italy, Jan. 23, 2004.
Freeze-Out in a Hybrid Model Freeze-out Workshop, Goethe-Universität Frankfurt Hannah Petersen.
Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
Event selection at lower incident energies Exists a strong correlation between all impact parameter dependent observables. Possible to exclude peripheral.
A MODEL FOR PROJECTILE FRAGMENTATION Collaborators: S. Mallik, VECC, India S. Das Gupta, McGill University, Canada 1 Gargi Chaudhuri.
Zbigniew Chajęcki National Superconducting Cyclotron Laboratory Michigan State University Probing reaction dynamics with two-particle correlations.
DPG Tagung, Breathing mode in an improved transport model T. Gaitanos, A.B. Larionov, H. Lenske, U. Mosel Introduction Improved relativistic transport.
Flow Vorticity and Rotation in Peripheral HIC Dujuan Wang CBCOS, Wuhan, 11/05/2014 University of Bergen, Norway.
Aim  to compare our model predictions with the measured (Dubna and GSI) evaporation cross sections for the 48 Ca Pb reactions. Calculations.
Collective Flow in Heavy-Ion Collisions Kirill Filimonov (LBNL)
Higher-Order Effects on the Incompressibility of Isospin Asymmetric Nuclear Matter Lie-Wen Chen ( 陈列文 ) (Institute of Nuclear, Particle, Astronomy, and.
DPG, Fragment formation in low energy proton-induced reactions within a hybrid BUU+SMM approach Th. Gaitanos, H. Lenske, U. Mosel Introduction.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Longitudinal de-correlation of anisotropic flow in Pb+Pb collisions Victor Roy ITP Goethe University Frankfurt In collaboration with L-G Pang, G-Y Qin,
Study of hadron properties in cold nuclear matter with HADES Pavel Tlustý, Nuclear Physics Institute, Řež, Czech Republic for the HADES Collaboration ,
Effect of isospin-dependent cluster recognition on the observables in heavy ion collisions Yingxun Zhang ( 张英逊 ) 2012 年 8 月 10 日, 兰州 合作者: Zhuxia Li, (CIAE)
Hypernuclear Production with Hadronic and Electromagnetic Probes Radhey Shyam Saha Institute of Nuclear Physics, Kolkata, India Z.Zt. Institut f. Theo.
Nuclear Structure and dynamics within the Energy Density Functional theory Denis Lacroix IPN Orsay Coll: G. Scamps, D. Gambacurta, G. Hupin M. Bender and.
Stochastic quantum dynamics beyond mean-field. Denis Lacroix Laboratoire de Physique Corpusculaire - Caen, FRANCE Introduction to stochastic TDHF Application.
H. Lenske Institut für Theoretische Physik, U. Giessen Aspects of SU(3) Flavor Physics In-medium Baryon Interactions Covariant Density Functional Theory.
Probing the density dependence of symmetry energy at subsaturation density with HICs Yingxun Zhang ( 张英逊 ) China Institute of Atomic Energy JINA/NSCL,
Nuclear Reactions - II A. Nucleon-Nucleus Reactions A.1 Spallation
Dec. 7 th,2013,HIM. Contents 2 I.RAON and Nuclear Reactions II.Introduction to Transport Model III.Equation of State and Symmetry Energy IV.Transport.
Trento, Giessen-BUU: recent progress T. Gaitanos (JLU-Giessen) Model outline Relativistic transport (GiBUU) (briefly) The transport Eq. in relativistic.
Probing the symmetry energy with isospin ratio from nucleons to fragments Yingxun Zhang( 张英逊 ) China Institute of Atomic Energy The 11 th International.
Recent improvements in the GSI fission model
Isospin study of projectile fragmentation Content 1 、 Isospin effect and EOS in asymmetry nuclei 2 、 Isotope Yields in projectile ragmentation 3 、 Summary.
激发能相关的能级密度参数和重核衰变性质 叶 巍 (东南大学物理系 南京 ). 内容 ◆ 问题背景 ◆ 理论模型 ◆ 计算结果和结论.
Kang Seog Lee Chonnam National University, Korea Dynamical Recombination model of QGP Introduction – recombination model Dynamic recomination calculation.
Light nuclei production in heavy-ion collisions at RHIC Md. Rihan Haque, for the STAR Collaboration Abstract Light nuclei (anti-nuclei) can be produced.
Spectator response to participants blast - experimental evidence and possible implications New tool for investigating the momentum- dependent properties.
High-resolution experiments on nuclear fragmentation at the FRS at GSI M. Valentina Ricciardi GSI Darmstadt, Germany.
PREDICTIONS OF KAON AND PROTON PRODUCTIONS IN PP COLLISIONS AT 7 TeV KRISTIYA TOMUANG Department of Physics, Naresuan University 1.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
D. Henzlova a, M. V. Ricciardi a, J. Benlliure b, A. S. Botvina a, T. Enqvist a, A. Keli ć a, P. Napolitani a, J. Pereira b, K.-H. Schmidt a a GSI-Darmstadt,
Nuclear Isovector Equation-of-State (EOS) and Astrophysics Hermann Wolter Dep. f. Physik, LMU Topics: 1.Phase diagram of strongly interacting matter and.
Erice, Production of fragments with finite strangeness in reactions wihtin a GiBUU+SMM combined approach Th. Gaitanos, H. Lenske, U. Mosel Many.
Sub-task 4: Spallation and fragmentation reactions M. Valentina Ricciardi (GSI) in place of José Benlliure (USC) Sub-task leader: Universidad de Santiago.
Results from an Integrated Boltzmann+Hydrodynamics Approach WPCF 2008, Krakau, Jan Steinheimer-Froschauer, Universität Frankfurt.
Olena Linnyk Charmonium in heavy ion collisions 16 July 2007.
R. Lednicky: Joint Institute for Nuclear Research, Dubna, Russia I.P. Lokhtin, A.M. Snigirev, L.V. Malinina: Moscow State University, Institute of Nuclear.
Momentum distributions of projectile residues: a new tool to investigate fundamental properties of nuclear matter M.V. Ricciardi, L. Audouin, J. Benlliure,
24 Nov 2006 Kentaro MIKI University of Tsukuba “electron / photon flow” Elliptic flow measurement of direct photon in √s NN =200GeV Au+Au collisions at.
Structure of light Λ hypernuclei Emiko Hiyama (RIKEN)
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
In-medium properties of nuclear fragments at the liquid-gas phase coexistence International Nuclear Physics Conference INPC2007 Tokyo, Japan, June 3-8,
重离子碰撞中的 ( 反 ) 超核研究 马余刚 中国科学院上海应用物理研究所 引言 RHIC-STAR 的超核测量 – 超氚核构建 – 寿命测量 – 奇异性因子 GSI 超核寿命测量实验简介 超核产生机制研究 关于 H 粒子寻找简介.
Workshop on Flow and heavy flavour in high energy heavy-Ion collisions Inha University, 2015/2/26.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Observation of antimatter hypernuclei at RHIC Jinhui Chen Kent State University for the STAR Collaboration 10 th International Conference on Hypernuclear.
Improvements of microscopic transport models stimulated by spallation data for incident energies from 113 to MeV Umm Al-Qura University and King.
DPG, Production of fragments with finite strangeness in heavy-ion collisions within a BUU+SMM combined model Th. Gaitanos, H. Lenske, U. Mosel.
Transverse and elliptic flows and stopping
T. Gaitanos, H. Lenske, U. Mosel
Structure and dynamics from the time-dependent Hartree-Fock model
Content Heavy ion reactions started fragmenting nuclei in the 1980’s. Its study taught us that nuclear matter has liquid and gaseous phases, phase.
Overview of the fragmentation mechanism
Reaction Dynamics in Near-Fermi-Energy Heavy Ion Collisions
Intermediate-mass-fragment Production in Spallation Reactions
in 124Sn,107Sn + 120Sn collisions at 600 MeV/nucleon
Effects of the φ-meson on the hyperon production in the hyperon star
Presentation transcript:

Fragment formation of nuclei and hypernuclei within a combined BUU+SMM model T. Gaitanos, H. Lenske, U. Mosel Introduction Outline of the relativistic transport model The transport equation (GiBUU) in the relativistic framework (Walecka model) conservation of energy-momentum tensor, ground-state Numerical aspects (conservation of energy-momentum tensor, ground-state) Hybrid GiBUU+SMM model Applications-I: Fragment formation in p+X & X+X Dynamical aspects, statistical aspects, comparison with exp. Applications-II: Formation of hypernuclei in X+X & p+X Final remarks & outlook Many thanks to GiBUU-group

Introduction… Production of light nuclei in reactions (fragmentation) Standard approach: combination of dynamical & statistical models Spallation reactions: useful tool to study/test long-time scales of fragmentation process Heavy-ion reactions: testing hybrid models in spectator fragmentation Recent Applications Production of hypernuclei in (HypHI-Phase I, GSI) In future: PANDA (pbar+X) & J-PARC J. Cugnon et al., NPA620 (97) 475, Mishustin et al., PLB359 (95) 261; NPA624 (97) 706 Production of light nuclei with strangeness (hypernuclei) Knowledge of YN & YY interaction (strangeness sector of hadronic EoS) ? N.K. Glendenning, astro-ph/ v1; F. Weber et. al., astro-ph/ v2

Relativistic Hypernuclei…         Production of Hypernuclei in Relativistic HIC Production of many hyperons from BB->BYK (3-body PS) Secondary rescattering (  N  YK) Multiple coalescence of hyperons with fragments Theoretical Framework Phase-Space evolution Phase-Space evolution Transport approaches (INC,BUU,RBUU,CBUU,(Ur)QMD,HSD,…) Description of fragment formation Description of fragment formation Statistical picture (SMM, Botvina & Mishustin) Description of hypernuclei formation? (presently) simple coalescence in coordinate and in momentum space (future) SMM with strangeness (Botvina & Pochodzalla)

Theoretical description… Initial non-equilibrium stage Relativistic transport equation of Boltzmann-type (GiBUU) ++ I coll (R)BUU exactly conservs energy-momentum tensor: Total energy (E tot =∫dxT 00 ) of a „source“, local Pressures (P long (x)=T zz,P tr (x)=T xx,yy ) Excitation energy Excitation energy: E exc =E tot -E bind, of a „source“

Asymptotic equilibrated stage Fission/spallation, evaporation, multifragmentation… (with increasing excitation) Statistical determination of partial decay widths  Monte-Carlo method (basic method similar to numerical treatment of collisions in transport approaches) E* A i,Z i E*-  A d,Z d j,  AiAi A d +n SMM code: Botvina & Mishustin, PR257(´95) 133 Non-Equilibrium dynamics within BUU until source(s) approaches stable configuration and local equilibration at t=t f excitation energy E exc Determination of mass (A), charge (Z) and excitation energy E exc of a source at time t=t f, then apply SMM Combination: GiBUU+SMM (hybrid model)…

Ground state in simulations: Stability… Important in calculating E exc Energy must be conserved! Important in determing the source No spurious particle emission!

Dynamical aspects in p+X and X+X reactions… Residual fireball-like source equlibrates after t>50-70fm/c Definition of residual nucleus:  >  sat /100. time (fm/c)

Phys. Lett. B 663, 197 (2008) Definition of residual nucleus:  >  sat /100. Non-Equilibrium dynamics within GiBUU until system(s) approach local equilibrium at t=t f Determination of A,Z and E exc at time t f, and then apply SMM Dynamical aspects in p+X and X+X reactions ( properties of „fragmenting source“ )… Impact parameter

Benchmark-I: p+X reactions (global characteristics)… Charge distribution… Mass distribution… Phys. Lett. B 663, 197 (2008) GSI-data J. Benlliure et al., Nucl. Phys. A683 (2001) 513. F. Rejmund et al., Nucl. Phys. A683 (2001) 540

Benchmark-I: p+X reactions (details)… Phys. Lett. B 663, 197 (2008) GSI-data J. Benlliure et al., Nucl. Phys. A683 (2001) 513. F. Rejmund et al., Nucl. Phys. A683 (2001) 540

Benchmark-I: reactions (more details)… Pre-Equilibrium (BUU): high-energy n-emission, QE-pick Asymptotic equilibreated state (SMM): Statistical decay of excited source Final Result: Hybrid GiBUU+SMM Data: (Saclay) S. Leray et al., PRC65, neutrons

Dynamical aspects in p+p and X+X reactions (Spectators)… Spectators Well defined conditions after onset of instability… Spectators …and onset of equilibration Def. ofSpectators Y (0) >  >  sat /100 To be submitted very soon ( )

Benchmark-II: X+X reactions (spectator fragmentation in To be submitted very soon ( ) data: ALADIN (GSI)

Hypernuclei from spectator fragmentation 12 C+ 12 coalescence Formation of hypernuclei from spectator fragmentation via coalescence (condition: Y inside radius of fragmenting source+momentum coalescence) Extremely low Extremely low total yields, ~1-3  b, pionic contribution~  b! M.Wakai, NPA547(92)89c Consistent with previous studies: M.Wakai, NPA547(92)89c In progress: (FAIR), pbar+X (PANDA) To be submitted very soon ( )

Dynamical aspects in high energy proton-induced reactions …(J-PARC, p+ 12 Density profiles along beam (z) axis Two sources (residual target+moving source)

Hypernuclei from high energy proton-induced reactions…(J-PARC, p+ 12 Two sources (residual target+moving source) Stable conditions after resonance decay Most of hyperons created & rescatter inside moving source To be submited very soon ( )

Final remarks & Outlook… Fragmentation in reactions within “hybrid” GiBUU+SMM  BUU: non-equilibrium dynamics, info on onset of equilibration & instabilities  Ground state stability important in extracting E x  SMM(Botvina/Mishustin): statistical decay of excited configuration Fragmentation in proton-induced reactions & HIC  Gi  GiBUU+SMM combined approach for fragmentation reactions  reasonable description of a wide selection of exp. Data Transport predictions for HypHI-project at GSI (PANDA & J-PARC in future)  Light hyperfragment production from spectator fragmentation~  b (however, coalescence picture too simple…) Future/under progress developments  Hyperfragment description more consistent: GiBUU+HypSMM: would be an important extension for HypHI  Studies on HypHI(X+X) PANDA (pbar+X) being studied… A.S. Botvina, J. Pochodzalla, Phys. Rev. C76 (2007)

Back up transparencies

Spectator matter properties (BUU)… Spectator very well suited for studies on fragments & hyperfragments Nice stable conditions… …before instability sets in

Ground state in BUU-I: Binding energies… Important in calculating E exc Important in calculating E exc : use for E tot and E bind the same model/technical parameters, for consistency! NOT Distributing „test particles“ to density profiles acc. empirical systematics (NOT consistent with RMF) NO Neglecting spatial derivatives of meson-field equations (NO surface effects) NO Neglecting iso-vector field (NO isospin-asymmetry)

Ground state in BUU-II: (RTF; account for surface & isospin-asymmetry)  Eqs. of motion + meson-field Eqs. including (spatial) gradients (ADI-method): + From RMF approach of QHD: Variational method… Relativistic Thomas-Fermi (RTF) equations  Relativistic Thomas-Fermi (RTF) equations RTF densities T.G., A.B. Larionov, work in progress… (2008)

Ground state in BUU-II: (under study…) 16 O „Std init“ (+ gradient terms) Improved init (consistent RTF) T.G, A.B. Larionov, work in progress… (2008)  Eqs. of motion + meson-field Eqs. including (spatial) gradients (ADI-method): + Improved init (consistent RTF) „Std init“ (+ gradient terms)

Ground state in BUU-II: (RTF and BUU test-particles densities) T.G, A.B. Larionov, work in progress… (2008)

Ground state in BUU-II: Results (application to proton-induced reactions)

Mean-field vs cascade – the role of the MDI…(J-PARC, p+ 12 central peripheral