Quantum Hall Ferromagnets-II Ramin Abolfath Luis Brey Anton Burkov Rene Cote Jim Eisenstein Herb Fertig Steve Girvin Charles Hanna Tomas Jungwirth Kentaro.

Slides:



Advertisements
Similar presentations
Chiral Tunneling and the Klein Paradox in Graphene M. I. Katsnelson, K
Advertisements

One-dimensional approach to frustrated magnets
Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Exploring Topological Phases With Quantum Walks $$ NSF, AFOSR MURI, DARPA, ARO Harvard-MIT Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard.
Quantum Hall Ferromagnets-I Ramin Abolfath Luis Brey Anton Burkov Rene Cote Jim Eisenstein Herb Fertig Steve Girvin Charles Hanna Tomas Jungwirth Kentaro.
4 December 2003NYU Colloquium1 Electronic Liquid Crystals Novel Phases of Electrons in Two Dimensions Alan Dorsey University of Florida Collaborators:
Gauge Field of Bloch Electrons in dual space First considered in context of QHE Kohmoto 1985 Principle of Quantum Mechanics Eigenstate does.
Quantum anomalous Hall effect (QAHE) and the quantum spin Hall effect (QSHE) Shoucheng Zhang, Stanford University Les Houches, June 2006.
Excitonic BEC in in Quantum Hall Bilayers Ramin Abolfath NRCC Anton Burkov UCSB Jim Eisenstein Cal Tech. Steve Girvin Yale Yogesh Joglekar LANL Jairo Sinova.
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
Quantum phase transitions in anisotropic dipolar magnets In collaboration with: Philip Stamp, Nicolas laflorencie Moshe Schechter University of British.
Quantum Spin Hall Effect - A New State of Matter ? - Naoto Nagaosa Dept. Applied Phys. Univ. Tokyo Collaborators: M. Onoda (AIST), Y. Avishai (Ben-Grion)
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
Activation energies and dissipation in biased quantum Hall bilayer systems at. B. Roostaei [1], H. A. Fertig [2,3], K. J. Mullen [1], S. Simon [4] [1]
Spin transport in spin-orbit coupled bands
Fractional topological insulators
Pseudospin Vortex-Antivortex States with Interwoven Spin Texture in Double Layer Quantum Hall Systems Bahman Roostaei, Jérôme Bourassa H.A. Fertig, Kieran.
Electronic properties and the quantum Hall effect in bilayer graphene Vladimir Falko.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Real Spin in Pseudospin Quasiparticles of Bilayer Quantum Hall systems B. Roostaei, H.A. Fertig,K. Mullen 1)Department of Physics and Astronomy,University.
Majorana Fermions and Topological Insulators
Activation energies and dissipation in biased quantum Hall bilayer systems at. B. Roostaei [1,2], H. A. Fertig [3,4], K. J. Mullen [2], S. Simon [5] [1]
Transport properties of mesoscopic graphene Björn Trauzettel Journées du graphène Laboratoire de Physique des Solides Orsay, Mai 2007 Collaborators:
Physics of Graphene A. M. Tsvelik. Graphene – a sheet of carbon atoms The spectrum is well described by the tight- binding Hamiltonian on a hexagonal.
Ordered States of Adatoms in Graphene V. Cheianov, O. Syljuasen, V. Fal’ko, and B. Altshuler.
Hofstadter’s Butterfly in the strongly interacting regime
High-field ground state of graphene at Dirac Point J. G. Checkelsky, Lu Li and N.P.O. Princeton University 1.Ground state of Dirac point in high fields.
Theory of Optically Induced Magnetization Switching in GaAs:Mn J. Fernandez-Rossier, A. Núñez, M. Abolfath and A. H. MacDonald Department of Physics, University.
Topological Insulators and Beyond
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Supersolid matter, or How do bosons resolve their frustration? Roger Melko (ORNL), Anton Burkov (Harvard) Ashvin Vishwanath (UC Berkeley), D.N.Sheng (CSU.
Novel Orbital Phases of Fermions in p-band Optical Lattices Congjun Wu Department of Physics, UC San Diego Feb. 23, 2009, KITP Collaborators: L. Balents,
Berry Phase Effects on Electronic Properties
グラフェン量子ホール系の発光 量子ホール系の光学ホール伝導度 1 青木研究室 M2 森本高裕 青木研究室 M2 森本高裕.
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Effects of Interaction and Disorder in Quantum Hall region of Dirac Fermions in 2D Graphene Donna Sheng (CSUN) In collaboration with: Hao Wang (CSUN),
The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor.
1 Unconventional Magnetism: Electron Liquid Crystal State and Dynamic Generation of Spin-orbit Coupling Congjun Wu C. Wu and S. C. Zhang, PRL 93,
Ady Stern (Weizmann) Papers: Stern & Halperin , PRL
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
(Simon Fraser University, Vancouver)
Mott phases, phase transitions, and the role of zero-energy states in graphene Igor Herbut (Simon Fraser University) Collaborators: Bitan Roy (SFU) Vladimir.
Band structure of graphene and CNT. Graphene : Lattice : 2- dimensional triangular lattice Two basis atoms X축X축 y축y축.
Jung Hoon Han (SKKU, Korea)
東京大学 青木研究室 D1 森本高裕 東京大学 青木研究室 D1 森本高裕 2009 年 7 月 10 日 筑波大学 Optical Hall conductivity in ordinary and graphene QHE systems Optical Hall conductivity in.
Topological Quantum Computing
Collin Broholm * Johns Hopkins University and NIST Center for Neutron Research Y. ChenJHU, Baltimore, USA M. EnderleILL, Grenoble, France Z. HondaRiken,
Ashvin Vishwanath UC Berkeley
The Puzzling Boundaries of Topological Quantum Matter Michael Levin Collaborators: Chien-Hung Lin (University of Chicago) Chenjie Wang (University of Chicago)
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Quantum Hall transition in graphene with correlated bond disorder T. Kawarabayshi (Toho University) Y. Hatsugai (University of Tsukuba) H. Aoki (University.
Dirac’s inspiration in the search for topological insulators
Lattice gauge theory treatment of Dirac semimetals at strong coupling Yasufumi Araki 1,2 1 Institute for Materials Research, Tohoku Univ. 2 Frontier Research.
Topological Insulators
Flat Band Nanostructures Vito Scarola
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009 Intoduction to topological order and topologial quantum computation.
Topological phases driven by skyrmions crystals
From fractionalized topological insulators to fractionalized Majoranas
Boris Altshuler Physics Department, Columbia University Collaboration:
Qian Niu 牛谦 University of Texas at Austin 北京大学
Spontaneous Symmetry Breaking and Analogies to the Higgs-Mechanism
Phase structure of graphene from Hybrid Monte-Carlo simulations
Topological Order and its Quantum Phase Transition
Observations of Nascent Superfluidity in a Bilayer Two-Dimensional
Correlations of Electrons in Magnetic Fields
Chiral Spin States in the Pyrochlore Heisenberg Magnet
Presentation transcript:

Quantum Hall Ferromagnets-II Ramin Abolfath Luis Brey Anton Burkov Rene Cote Jim Eisenstein Herb Fertig Steve Girvin Charles Hanna Tomas Jungwirth Kentaro Nomura Leo Radzihovksy (Doug) Rajaraman Mark Rasolt Jairo Sinova Kun Yang Les Houches June 2006 University of Texas at Austin

Skyrmions

Skrymion in 2D O(3) Ferromagnet

QHF Energy Functional Landau Gauge Energy Functional Exchange Interaction Form Factor

Quantum Hall Skyrmions Carry Charge !! Sondhi et al. PRB ‘93

Skyrmions in Ground State- II Hartree-Fock Skyrmion WF Symmetric Gauge LLL Wavefunctions Classical # of reversed spins

Skyrmions Size n=0 LL Fertig et al. PRB ’94 ‘97 K g

Fertig et al. PRB ’94 Barrett & Tycko PRL ‘95 Skyrmions in Ground State

Skyrmion Crystal Brey et al. PRL ‘95

Cote et al. PRL ‘97 Skyrmion Crystal Collective Excitations k 1.5 ~ phonons k 1 ~ new Larmour

QHF Graphene Nomura cond-mat/06 – Alicea cond-mat/06 – Yang cond-mat/06

Graphene Landau Levels Conduction Valence Semenoff Haldane Kane Mele

Graphene Quantum Hall Effect Novoselov et al. – Manchester – Nature (2005)  xx  xy n

Zhang et al. – Columbia – cond-mat/ B= 45 Tesla

SU(4) Ferromagnetism Arovas/Karlhede (1999) – Ezawa (2002)  A(E) Landau Band Exchange Integral

QHF Stoner Criterion Fogler & Shklovskii (1995); Maude et al. (2005) AX > 1  QHF Landau Band Width Interaction Energy Scale

Zero Field Conductivity   V gate Geim Nature (2005) Golden Rule ?

Coulomb Scattering I where 2-3

Coulomb Scattering II 

Self-consistent Screening Das Sarma Ando Screened Exchange

Phase Diagram Manchester   1.5 Columbia   5.0 Nomura cond-mat/0603 PRL

Broken Symmetry SU(N)/(SU(M) x SU(N-M)) coset space 2 (N-M) parameters

Graphene Skyrmions - I Graphne Form Factor Yang et al., cond-mat/

Graphene Skyrmions – II SU(N)/(SU(M-1) x SU(N-M-1)) coset space 2 (N-M) + 2 (N-1) parameters Skyrm Lattice has N Goldstone modes k 1.5 & 2 k 1 & k 2

Next Time: Skyrmions QHF Anistropy – Ising or XY QHF in Graphene Quantum Hall Superfluids & Pseudo-spin Transfer Torques