M. Di Marco, P. Peiffer, S. Schönert

Slides:



Advertisements
Similar presentations
Dante Nakazawa with Prof. Juan Collar
Advertisements

Advanced GAmma Tracking Array
M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,
DMSAG 14/8/06 Mark Boulay Towards Dark Matter with DEAP at SNOLAB Mark Boulay Canada Research Chair in Particle Astrophysics Queen’s University DEAP-1:
GERDA General Meeting, Tübingen, November 2005 Nitrogen and argon radiopurity Grzegorz Zuzel for TG11 MPI-K Heidelberg MPI-K Heidelberg.
Activity for the Gerda-specific part Description of the Gerda setup including shielding (water tank, Cu tank, liquid Nitrogen), crystals array and kapton.
Status of Ultra-low Energy HPGe Detector for low-mass WIMP search Li Xin (Tsinghua University) KIMS collaboration Oct.22nd, 2005.
INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science – MPD.
LNGS (GERmanium Detector Assembly Stefan Schönert MPIK Heidelberg NOW 2004, Sept. 12, 2004.
September 14, 2007Hardy Simgen, TAUP 2007 / Sendai1 Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
Results from M. Di Marco, P. Peiffer, S. Schönert Thanks to Davide Franco and Marik Barnabe Heider Gerda collaboration meeting, Tübingen 9th-11th.
GERDA: GERmanium Detector Array
Proportional Light in a Dual Phase Xenon Chamber
COBRA Double Beta Decay Experiment D.Y. Stewart, Dr. Y.A. Ramachers, Prof. P.F.Harrison Experimental Particle Physics Group University of Warwick What.
IDEA Meeting, MPI-K Heidelberg, October 2004 Techniques for analysis and purification of nitrogen and argon Grzegorz Zuzel MPI-K Heidelberg.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
GERmanium Detector Array – a Search for Neutrinoless Double Beta Decay X. Liu - MPI für Physik, München Symposium – symmetries and phases in the universe,
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
Annual Modulation Study of Dark Matter Using CsI(Tl) Crystals In KIMS Experiment J.H. Choi (Seoul National University) SUSY2012, Beijing.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
THE CUORE EXPERIMENT: A SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY Marco Andrea Carrettoni on behalf of the CUORE collaboration 2 nd International Conference.
Neutron Monitoring Detector in KIMS Jungwon Kwak Seoul National University 2003 October 25 th KPS meeting.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
Operation of bare Ge-diodes in LN/LAr 1 st IDEA meeting Como, April 8 (2004) Stefan Schoenert.
Planned Transregional Collaborative Research Center TR27: Neutrinos and Beyond Project A4: Development of segmented germanium detectors for the investigation.
M. Wojcik Instytute of Physics, Jagiellonian University
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Béla Majorovits for the GERDA collaboration ICHEP 2012, Melbourne, Australia, July Béla Majorovits for the GERDA collaboration Status and plans.
What is MaGe? MJ outputGERDA output MaGe is a Monte Carlo simulation package dedicated to experiments searching for 0 2  decay in 76 Ge. Created by the.
Half Day IoP Meeting: Neutrinoless Double Beta Decay, University College London, Great Britain The GERDA Experiment at Gran Sasso Grzegorz Zuzel.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
MaGe framework for Monte Carlo simulations MaGe is a Geant4-based Monte Carlo simulation package dedicated to experiments searching for 0 2  decay of.
LArGe-MPIK progress report physics validation of MaGe comparison with LArGe-MPIK: (preliminary) results GERDA collaboration meeting Dubna, June 26 th -29.
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC Cracow, Poland The GERDA Experiment at Gran.
Experiment [1] M. Di Marco, P. Peiffer, S. Schonert, LArGe: Background suppression using liquid argon scintillation for 0νββ - decay search with enriched.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
1st Year Talk1 PEP Violation Analysis with NEMO3 and Calorimeter R&D for SuperNEMO Anastasia Freshville.
A screening facility for next generation low-background experiments Tom Shutt Case Western Reserve University.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
GERDA – a Search for Neutrinoless Double Beta Decay MPI für Physik, München Neutrinoless double beta decay and the GERDA experimentThe detector array and.
M.Altmann, GERDA Status Report SNOLAB Workshop IV, Investigating Neutrinoless Double Beta Decay Status of the GERDA Experiment Michael Altmann.
PMN07 Blaubeuren Segmented germanium detectors in 0νββ-decay experiments Kevin Kröninger (Max-Planck-Institut für Physik, München)
Phase I: Use available 76 Ge diodes from Heidelberg- Moscow and IGEX experiments (~18 kg). Scrutinize with high siginificance current evidence. Phase II:
A simulation study on DBD search with pilot setup AMoRE - SNU jilee.
Recent progress in ultra-low noise, ultra-low background detectors V. Marian, M.O. Lampert, B. Pirard, P. Quirin CANBERRA France (Lingolsheim) Workshop.
November 19, 2007Hardy Simgen, IDEA-Meeting Paris Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
IDEA Meeting, , Paris, France New results on the Argon purification Grzegorz Zuzel Max-Planck-Institut für Kernphysik, Heidelberg.
SIMULATION OF BACKGROUND REDUCTION TECHNIQUES FOR Ge DBD DETECTORS Héctor Gómez Maluenda. University of Zaragoza. GERDA/Majorana MC Meeting.
Study of the cryogenic THGEM-GPM for the readout of scintillation light from liquid argon Xie Wenqing( 谢文庆 ), Fu Yidong( 付逸冬 ), Li Yulan( 李玉兰 ) Department.
09/04/2006NDM061 CANDLES for the study of 48 Ca double beta decay OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
The Status of Hyperball-J Akio Sasaki Dept. of Phys. Tohoku Univ. 23/9/2011.
Towards pulse shape calculation and analysis for the GERDA experiment Kevin Kröninger, MPI für Physik International School of Nuclear Physics, Erice 2005.
Xiong Zuo IHEP, CAS, for the LHAASO Collaboration
The COBRA Experiment: Future Prospects
Overview of GERDA simulation activities with MaGe
Pulse-shape discrimination with Cs2HfCl6 crystal
Prompt Gamma Activation Analysis on 76Ge
The Heidelberg Dark Matter Search Experiment
Status of 100Mo based DBD experiment
Pre-Test-stands at MPI Munich
CsI Compton Veto Detector for A low Mass WIMP Experiment
Neutrino Telescope Stefan Schönert (TUM)
Status of Neutron flux Analysis in KIMS experiment
Davide Franco for the Borexino Collaboration Milano University & INFN
Xiong Zuo IHEP, CAS, for the LHAASO Collaboration
Presentation transcript:

M. Di Marco, P. Peiffer, S. Schönert LArGe A Liquid Argon Germanium hybrid detector system in the framework of the GERDA experiment M. Di Marco, P. Peiffer, S. Schönert Thanks to Marik Barnabe Heider Cryogenic Liquit Detectors for Future Particle Physics workshop, LNGS 13th-14th March 2006

Outline Introduction: GERDA Energy resolution of bare Ge-diodes in LAr Experimental Setup of LArGe@MPI-K DAQ Operational parameters Light yield Background spectrum Characterization with various -sources 137Cs, 60Co, 226Ra, 232Th bkgd suppression in RoI Outlook on LArGe@LNGS Conclusions

GERDA – GERmanium Detector Array Physics goal: search for 0ββ-decay   majorana or dirac particle? Method: operate bare, 76Ge enriched, HP-Ge-diodes in LN (or LAr) Signal: single-site events in HP-Ge-diode (Qßß=2039 keV) Background:  - compton or summation, µ-induced, ... Physics reach: Phase I: 15 kg*y, existing diodes (HdM, IGEX) sensitivity goal: T1/2 > 3*1025 y mee < 0.24 – 0.77 eV Phase II: 100 kg*y, increased mass, new diodes, additional active background suppression. sensitivity goal: T1/2 > 2*1026 y mee < 0.09 – 0.29 ev H2O LN/LAr Ge GERDA @ LNGS Challenge: reduce background at 2039 keV by ~102  10-3 cts/(kg*keV*y)

Background suppression in GERDA LN as passive shielding (baseline design) Cerenkov-muon-veto (Phase I) Anti-coincidence with adjacent crystals (Phase I) Pulse shape discrimination (Phase I) Time correlation between events (Phase I) Detector-segmentation (Phase II) LAr scintillation anti-coincidence (option for Phase II) LArGe@MPI-K: R&D experiment operating HP-Ge-diode in LAr. With simultaneous LAr-scintillation-light readout.

Energy resolution of a bare 2kg HP-Ge-diode in LAr 1.33 MeV 1.17 MeV 1.33 MeV FWHM 2.3 keV 40K summation 208Tl Resolution in LN @ 1.33 MeV 2.3 keV FWHM Resolution in LAr @ 1.33 MeV  No deterioration of energy-resolution for bare p-type detectors in LAr !

Outline Introduction: GERDA Resolution of bare Ge-diodes in LAr Experimental Setup of LArGe@MPI-K DAQ Operational parameters Light yield Background spectrum Characterization with various -sources 137Cs, 60Co, 226Ra, 232Th bkgd suppression in RoI Outlook on LArGe@LNGS Conclusions

LArGe@MPI-K: Schematic system description Bare p-type HP-Ge-diode Dewar ∅29 cm, h=65 cm Light detection: WLS (VM2000) + PMT(8“, ETL 9357-KFLB ) Active volume ∅20 cm, h=43 cm ≈ 19 kg LAr Shielding: 5 cm lead + 15 mwe underground - Measurements: Internal source - Background from crystal holders External source - Background from walls

Electronics Trigger on Ge-signal Shaping 3 µs Shaping 3 µs Trigger on Ge-signal Record Ge-signal and LAr-signal simultaneously Coincidence time 6 µs Software cut on recorded data LAr

Operational parameters Canberra p-type crystal (390 g) source Ge-rate PMT-rate * Random coinc.** Back-ground 7 Hz 2,1 kHz 1,2 % 60Co int. 600 Bq 17 Hz 2,8 kHz 1,68 % 226Ra int. 1kBq 23 Hz 3,2 kHz 1,92 % Data taking: Sept. 05 – Dec. 05 Stability monitored by: peak position energy resolution leakage current Energy resolution: ~4.5 keV FWHM w/o PMT ~5 keV with PMT At 1.33 MeV 60Co-line * Threshold at single pe (~ 2.5 keV) ** Coincidence time: 6 µs Background suppression is not compromised by signal loss due to random coincidences ! Energy resolution limited in this setup.

Photo-electron yield in LArGe@MPI-K spe – peak (LED generated) 57Co peak in LAr 122 keV - 86% 136 keV - 11% Source position: 57Co-peak at ch 2153, peak energy 123.5 keV spe-peak at ch (122.4 ± 3), pedestal at ch 81 photo-electron yield L = (407 ± 10) pe/MeV - Possible to improve light yield with TPB (WARP)

Background spectrum (LArGe@MPI-K) Ge signal (no veto) 40K 40 counts/h 208Tl 10 counts/h Ge signal after veto: fraction of the signal which „survives“ the cut energy in Ge (MeV) Time of data taking: 2 days

Outline Introduction: GERDA Resolution of bare Ge-diodes in LAr Experimental Setup of LArGe@MPI-K DAQ Operational parameters Light yield Background spectrum Characterization with various -sources 137Cs, 60Co, 226Ra, 232Th bkgd suppression in RoI Outlook on LArGe@LNGS Conclusions

Characterization with different sources 137Cs : single  line at 662 keV full energy peak : no suppression with LAr veto Compton continuum: suppressed by LAr veto

137Cs real data simulations 662 keV 662 keV ~ 100% survival Compton continuum: 20% survival simulations very well reproduced by MC(MaGe): shape of energy spectrum peak efficiency peak/Compton ratio survival probability 662 keV 100% survival Compton continuum: 20% survival

Characterization with different sources full energy peaks : no suppression with LAr veto 60Co : two  lines (1.1 and 1.3 MeV) in a cascade external : high probability that only 1  reaches the crystal  acts as 2 single  lines internal : if one  reaches the crystal, 2nd  will deposit its energy in LAr full energy peak : suppressed by LAr veto Compton continuum: suppressed by LAr veto

60Co peak suppression internal source external source 1.5 m 100% 40%

226Ra real vs. MC RoI (Qββ=2039 keV) 20% survival No suppression LAr suppressed

232Th real vs. MC (208Tl+228Ac) 228Ac – contribution No suppression 228Ac – contribution  228Ac not in secular equilibrium with 228Th LAr suppressed RoI: 6% survival

232Th No suppression LAr suppressed RoI: 6% survival

Outline Introduction: GERDA Resolution of bare Ge-diodes in LAr Experimental Setup of LArGe@MPI-K DAQ Operational parameters Light yield Background spectrum Characterization with various -sources 137Cs, 60Co, 226Ra, 232Th bkgd suppression in RoI Outlook on LArGe@LNGS Conclusions

Outlook: LArGe @ Gran Sasso Active volume ∅20 cm  supression limited by escapes Active volume ∅90 cm  No significant escapes. Suppression limited by non-active materials. Exapmles (MC): Background suppression for contaminations located in detector support Bi-214 Tl-208 factor: 10 LArGe suppression and segmentation are orthogonal !  Suppression factors multiplicative 3·10²

Conclusions LAr does not deteriorate resolution of p-type crystals Experimental data shows that LAr veto is a powerful method for background suppression No relevant loss of 0ßß signal Results will be improved in larger setup @LNGS MaGe simulations reproduce well the data

137Cs – effective veto threshold No suppression LAr suppressed LAr-veto threshold ~ 1pe = 2.5 keV

60Co MC vs. real

Survival probabilities for LArGe-MPIK setup Source 137Cs 60Co (ext) 1.3 MeV 232Th (ext.) 583 keV 2.6 MeV RoI 60Co (int) 232Th (int) 226Ra (int) 609 keV 2,4 MeV Compton continuum 15% ~ 30% ~ 25 – 33% 12% 6% 19-27% full-E peak 100% ~ 100% 40% 30% full energy peak : no suppression by LAr veto Compton continuum: suppressed by LAr veto full energy peak : suppressed by LAr veto No efficiency loss expected for 0ßß-events Random coincidence even for 1 kBq source next to the crystal: < 2% Background suppression limited by radius of the active volume. R = 10 cm  significant amount of ‘s escape without depositing energy in LAr

(nuclear fuel reprocessing plants) 39Ar, 42Ar and 85Kr Decay mode Source Concentration (STP) 222Rn T1/2 = 3.8 d , ,  Primordial 238U 1 - ?00 Bq/m3 air 85Kr T1/2 = 10.8 y  (687 keV) ,  235U fission (nuclear fuel reprocessing plants) 1.4 Bq/m3 air 1.2 MBq/m3 Kr 39Ar T1/2 = 269 y  (565 keV) Cosmogenic 17 mBq/m3 air 1.8 Bq/m3 Ar 42Ar T1/2 = 32.9 y  (600 keV) 0.5 µBq/m3 air 50 µBq/m3 Ar Q-value of 39Ar and 85Kr below 700 keV – relevant in case of dark matter detection Dead-time could be a problem when Ar scintillation is used (slow decay time: ~ 1µs) 42Ar is naturally low

39Ar and 85Kr in argon Dead time: Assume 10 m3 active volume 39Ar rate: 15 kHz  1.5 % Fine! 85Kr rate not higher  ≤ 0.3 ppm Kr required Results from a 2.3 kg WARP test stand : ~ 0.6 ppm