Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Quantum.

Slides:



Advertisements
Similar presentations
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Advertisements

Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Quantum Phase Transitions Subir Sachdev Talks online at
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Reviews:
Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Physical Review B 71, and (2005), cond-mat/
Magnetic phases and critical points of insulators and superconductors Colloquium article in Reviews of Modern Physics, July 2003, cond-mat/ cond-mat/
Quantum phase transitions of correlated electrons and atoms Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Competing orders in the cuprate superconductors.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
Insights into quantum matter from new experiments Detecting new many body states will require: Atomic scale resolution of magnetic fields Measuring and.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Talk online:
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
The quantum mechanics of two dimensional superfluids Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz Bartosch.
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); cond-mat/ cond-mat/ Leon Balents.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Talk online at Physical Review.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Tuning order in the.
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Competing orders and quantum criticality
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Deconfined quantum criticality T. Senthil (MIT) P. Ghaemi,P. Nikolic, M. Levin (MIT) M. Hermele (UCSB) O. Motrunich (KITP), A. Vishwanath (MIT) L. Balents,
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Understanding.
T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe) Quantum phases and critical points of correlated metals Transparencies online at
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Quantum criticality: where are we and where are we going ?
Review on quantum criticality in metals and beyond
Some open questions from this conference/workshop
The quantum phase transition between a superfluid and an insulator: applications to trapped ultracold atoms and the cuprate superconductors.
Quantum vortices and competing orders
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Quantum phases and critical points of correlated metals
Science 303, 1490 (2004); cond-mat/ cond-mat/
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov
Experimental Evidences on Spin-Charge Separation
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); Physical Review B 70, (2004), 71,
Quantum phases and critical points of correlated metals
Quantum phase transitions and the Luttinger theorem.
The quantum mechanics of two dimensional superfluids
Deconfined quantum criticality
Quantum phase transitions out of the heavy Fermi liquid
Presentation transcript:

Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Quantum criticality in insulators, metals and superconductors Colloquium article in Reviews of Modern Physics, July 2003, cond-mat/ Talk online: Sachdev

Pressure, carrier concentration,…. T=0 Quantum critical point States on both sides of critical point could be either (A) Insulators (B) Metals (C) Superconductors SDW

(A) Insulators Coupled ladder antiferromagnet

S=1/2 spins on coupled 2-leg ladders N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 4529 (1994). J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999). M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, (2002).

Square lattice antiferromagnet Experimental realization: Ground state has long-range collinear magnetic (Neel) order Excitations: 2 spin waves

Weakly coupled ladders Paramagnetic ground state

Excitations Excitation: S=1 exciton (spin collective mode, “triplon”) Energy dispersion away from wavevector S=1/2 spinons are confined by a linear potential.

1 c Quantum paramagnet Neel state Neel order N 0 Spin gap  T=0

close to c : use “soft spin” field 3-component antiferromagnetic order parameter Field theory for quantum criticality Quantum criticality described by strongly-coupled critical theory with universal dynamic response functions dependent on Exciton scattering amplitude is determined by k B T alone, and not by the value of microscopic coupling u S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).

(B) Metals Spin density wave order in the presence of a Fermi surface

Low energy “paramagnon” excitations near the Fermi surface Damping by fermionic quasiparticles leads to M. T. Beal-Monod and K. Maki, Phys. Rev. Lett. 34, 1461 (1975); J.A. Hertz, Phys. Rev. B 14, 1165 (1976). J. Mathon, Proc. R. Soc. London A, 306, 355 (1968); T.V. Ramakrishnan, Phys. Rev. B 10, 4014 (1974); T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer-Verlag, Berlin (1985); G. G. Lonzarich and L. Taillefer, J. Phys. C 18, 4339 (1985); A.J. Millis, Phys. Rev. B 48, 7183 (1993). Characteristic paramagnon energy at finite temperature  (0,T) ~ T p with p > 1. Arises from non-universal corrections to scaling, generated by term.

(C) Superconductors Co-existence of superconductivity and spin- density wave order

Otherwise, new theory of coupled excitons and nodal quasiparticles L. Balents, M.P.A. Fisher, C. Nayak, Int. J. Mod. Phys. B 12, 1033 (1998).

Effect of an applied magnetic field

H  Gapped spin singlet state SDW Characteristic field g  B H = , the spin gap 1 Tesla = meV Effect is negligible over experimental field scales cc Zeeman term: only effect in coupled ladder system (A) Insulators

(B) Metals Weak effects (shifts in phase boundary) of order H 2 at small H. (First order) transitions involving changes in Fermi surface topology at large H Weak effects (shifts in phase boundary) of order H 2 at small H. (First order) transitions involving changes in Fermi surface topology at large H

(C) Superconductors E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, (2001).

Neutron scattering observation of SDW order enhanced by superflow. E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, (2001). Phase diagram of a superconductor in a magnetic field SDW SC+ SDW SC

B. Lake, H. M. Rønnow, N. B. Christensen, G. Aeppli, K. Lefmann, D. F. McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, T. E. Mason, Nature, 415, 299 (2002). See also S. Katano, M. Sato, K. Yamada, T. Suzuki, and T. Fukase, Phys. Rev. B 62, R14677 (2000).

SC Neutron scattering observation of SDW order enhanced by superflow. Prediction: SDW fluctuations enhanced by superflow and bond order pinned by vortex cores (no spins in vortices). Should be observable in STM K. Park and S. Sachdev Phys. Rev. B 64, (2001). Y. Zhang, E. Demler and S. Sachdev, Phys. Rev. B 66, (2002). E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, (2001). Phase diagram of a superconductor in a magnetic field SDW SC+ SDW

100Å b 7 pA 0 pA Vortex-induced LDOS of Bi 2 Sr 2 CaCu 2 O 8+  integrated from 1meV to 12meV J. Hoffman E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). Our interpretation: LDOS modulations are signals of bond order of period 4 revealed in vortex halo See also: S. A. Kivelson, E. Fradkin, V. Oganesyan, I. P. Bindloss, J. M. Tranquada, A. Kapitulnik, and C. Howald, cond- mat/

Similar results apply to quantum critical points with other “conventional” (fermion bilinear) order parameters e.g. charge density wave, orbital currents… Similar results apply to quantum critical points with other “conventional” (fermion bilinear) order parameters e.g. charge density wave, orbital currents…

Compact U(1) gauge theory: bond order and confined spinons in d=2

Paramagnetic ground state of coupled ladder model

Can such a state with bond order be the ground state of a system with full square lattice symmetry ?

Key ingredient: Spin Berry Phases Write down path integral for quantum spin fluctuations

Key ingredient: Spin Berry Phases

Change in choice of n 0 is like a “gauge transformation” (  a is the oriented area of the spherical triangle formed by N a and the two choices for N 0 ). The area of the triangle is uncertain modulo 4  and the action is invariant under These principles strongly constrain the effective action for A a  which provides description of the paramagnetic phase

Simplest effective action for A a  fluctuations in the paramagnet This theory can be reliably analyzed by a duality mapping. confining d=2: The gauge theory is always in a confining phase and there is bond order in the ground state. d=3: A deconfined phase with a gapless “photon” is possible. N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990). K. Park and S. Sachdev, Phys. Rev. B 65, (2002).

A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett. 89, (2002) Bond order in a frustrated S=1/2 XY magnet g= First large scale numerical study of the destruction of Neel order in a S=1/2 antiferromagnet with full square lattice symmetry See also C. H. Chung, Hae-Young Kee, and Yong Baek Kim, cond-mat/

Competing order parameters in the cuprate superconductors 1. Pairing order of BCS theory (Bose-Einstein) condensation of d-wave Cooper pairs Orders associated with proximate Mott insulator 2. Collinear magnetic order 3. Bond/charge/stripe order (couples strongly to half-breathing phonons) S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991). M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999); M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. B 62, 6721 (2000); M. Vojta, Phys. Rev. B 66, (2002).

Compact U(1) gauge theory: Deconfined spinons and quantum criticality in heavy fermion compounds in d=3 (talk by Matthias Vojta on Friday 10:00)

A new phase: Fractionalized Fermi Liquid (FL *) f-electrons form a spin liquid with neutral spinon excitations. The state has “topological order”. The topological order can be detected by the violation of Luttinger’s theorem. It can only appear in dimensions d > 1 Precursor: S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, (2002). T. Senthil, S. Sachdev and M. Vojta, Phys. Rev. Lett. 90, (2003).

Phase diagram (U(1), d=3) Sharp transition at T=0 in d=3 compact U(1) gauge theory; compactness “irrelevant” at critical point No transition for T>0 in d=3 compact U(1) gauge theory; compactness essential for this feature

Phase diagram (U(1), d=3) Fermi surface volume does not include local moments Specific heat ~ T ln T Violation of Wiedemann-Franz

Conclusions I.Cuprate superconductors: Magnetic/bond order co-exist and compete with superconductivity at low doping. Theory of quantum phase transitions provides a description of “fluctuating order” in the superconductor. II.“Hidden order” in heavy fermion systems Fractionalized states (FL* and SDW*) lead to strongly interacting quantum criticality. Conclusions I.Cuprate superconductors: Magnetic/bond order co-exist and compete with superconductivity at low doping. Theory of quantum phase transitions provides a description of “fluctuating order” in the superconductor. II.“Hidden order” in heavy fermion systems Fractionalized states (FL* and SDW*) lead to strongly interacting quantum criticality.