Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at

Slides:



Advertisements
Similar presentations
Kondo Physics from a Quantum Information Perspective
Advertisements

Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Quantum Phase Transitions Subir Sachdev Talks online at
Quantum phase transitions of correlated electrons and atoms Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz.
Subir Sachdev Quantum phase transitions of ultracold atoms Transparencies online at Quantum Phase Transitions Cambridge.
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
Quantum critical transport, duality, and M-theory hep-th/ Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh.
Phase Diagram of One-Dimensional Bosons in Disordered Potential Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman-Weizmann Yariv Kafri.
Quantum Phase Transition in Ultracold bosonic atoms Bhanu Pratap Das Indian Institute of Astrophysics Bangalore.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Strongly interacting cold atoms Subir Sachdev Talks online at
Quantum phase transitions cond-mat/ Quantum Phase Transitions Cambridge University Press.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
The quantum mechanics of two dimensional superfluids Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz Bartosch.
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); cond-mat/ cond-mat/ Leon Balents.
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Equilibrium dynamics of entangled states near quantum critical points Talk online at Physical Review Letters 78, 843.
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
Breaking electrons apart in condensed matter physics T. Senthil (MIT) Group at MIT Predrag Nikolic Dinesh Raut O. Motrunich (now at KITP) A. Vishwanath.
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Talk online at Physical Review.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Quantum phase transition in an atomic Bose gas with Feshbach resonances M.W.J. Romans (Utrecht) R.A. Duine (Utrecht) S. Sachdev (Yale) H.T.C. Stoof (Utrecht)
Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications.
Exact ground states of a frustrated 2D magnet: deconfined fractional excitations at a first order quantum phase transition Cristian D. Batista and Stuart.
Purity and Continuous Quantum Phase Transition in XX spin chain Wonmin Son In collaboration with; Luigi Amico (Madrid), Francesco Plastina (Italy), Vlatko.
A. S=1/2 fermions(Si:P, 2DEG) Metal-insulator transition Evolution of magnetism across transition. Phil. Trans. Roy. Soc. A 356, 173 (1998) (cond-mat/ )
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Subir Sachdev Superfluids and their vortices Talk online:
Deconfined quantum criticality T. Senthil (MIT) P. Ghaemi,P. Nikolic, M. Levin (MIT) M. Hermele (UCSB) O. Motrunich (KITP), A. Vishwanath (MIT) L. Balents,
Higgs Bosons in Condensed Matter Muir Morrison Ph 199 5/23/14.
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe) Quantum phases and critical points of correlated metals Transparencies online at
Arnau Riera, Grup QIC, Universitat de Barcelona Universität Potsdam 10 December 2009 Simulation of the Laughlin state in an optical lattice.
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum criticality: where are we and where are we going ?
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Quantum phases and critical points of correlated metals
Science 303, 1490 (2004); cond-mat/ cond-mat/
Electrical and thermal transport near quantum phase transitions in condensed matter, and in dyonic black holes Sean Hartnoll (KITP) Pavel.
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); Physical Review B 70, (2004), 71,
Quantum phases and critical points of correlated metals
Quantum phase transitions and the Luttinger theorem.
Possible realization of SU(2)_2 WZNW Quantum Critical Point in CaCu2O3
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Topological Order and its Quantum Phase Transition
Spectroscopy of ultracold bosons by periodic lattice modulations
Deconfined quantum criticality
Quantum phase transitions out of the heavy Fermi liquid
Presentation transcript:

Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at Quantum Phase Transitions Cambridge University Press

What is a quantum phase transition ? Non-analyticity in ground state properties as a function of some control parameter g E g True level crossing: Usually a first-order transition E g Avoided level crossing which becomes sharp in the infinite volume limit: second-order transition

T Quantum-critical Why study quantum phase transitions ? Theory for a quantum system with strong correlations: describe phases on either side of g c by expanding in deviation from the quantum critical point. Critical point is a novel state of matter without quasiparticle excitations Critical excitations control dynamics in the wide quantum-critical region at non-zero temperatures. g gcgc Important property of ground state at g=g c : temporal and spatial scale invariance; characteristic energy scale at other values of g:

Outline I.The quantum Ising chain. II.The superfluid-insulator transition III.Quantum transitions without local order parameters: fractionalization. IV.Conclusions

I. Quantum Ising Chain 2J2J

Full Hamiltonian leads to entangled states at g of order unity

Weakly-coupled qubits Ground state: Lowest excited states: Coupling between qubits creates “flipped-spin” quasiparticle states at momentum p Entire spectrum can be constructed out of multi-quasiparticle states p

Three quasiparticle continuum Quasiparticle pole Structure holds to all orders in g S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997) ~3  Weakly-coupled qubits

Ground states: Lowest excited states: domain walls Coupling between qubits creates new “domain- wall” quasiparticle states at momentum p p Strongly-coupled qubits

Two domain-wall continuum Structure holds to all orders in 1/g S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997) ~2  Strongly-coupled qubits

Entangled states at g of order unity g gcgc “Flipped-spin” Quasiparticle weight Z A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, (1994) g gcgc Ferromagnetic moment N 0 P. Pfeuty Annals of Physics, 57, 79 (1970) g gcgc Excitation energy gap 

Critical coupling No quasiparticles --- dissipative critical continuum

Quasiclassical dynamics S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997). Crossovers at nonzero temperature

II. The Superfluid-Insulator transition Boson Hubbard model For small U/t, ground state is a superfluid BEC with superfluid density density of bosons M.PA. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher Phys. Rev. B 40, 546 (1989).

What is the ground state for large U/t ? Typically, the ground state remains a superfluid, but with superfluid density density of bosons The superfluid density evolves smoothly from large values at small U/t, to small values at large U/t, and there is no quantum phase transition at any intermediate value of U/t. (In systems with Galilean invariance and at zero temperature, superfluid density=density of bosons always, independent of the strength of the interactions)

What is the ground state for large U/t ? Incompressible, insulating ground states, with zero superfluid density, appear at special commensurate densities Ground state has “density wave” order, which spontaneously breaks lattice symmetries

Excitations of the insulator: infinitely long-lived, finite energy quasiparticles and quasiholes

Continuum of two quasiparticles + one quasihole Quasiparticle pole ~3  Insulating ground state Similar result for quasi-hole excitations obtained by removing a boson

Entangled states at of order unity g gcgc Quasiparticle weight Z g gcgc Superfluid density  s g gcgc Excitation energy gap 

Quasiclassical dynamics S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). K. Damle and S. Sachdev Phys. Rev. B 56, 8714 (1997). Crossovers at nonzero temperature M.P.A. Fisher, G. Girvin, and G. Grinstein, Phys. Rev. Lett. 64, 587 (1990). K. Damle and S. Sachdev Phys. Rev. B 56, 8714 (1997).

II. Quantum transitions without local order parameters: fractionalization S=1/2 spins on coupled 2-leg ladders e.g. SrCu 2 O 3

Ground state for J large S=0 quantum paramagnet

Elementary excitations of paramagnet For large J, there is a stable S=1, neutral, quasiparticle excitation: its two S=1/2 constituent spins are confined by a linear attractive potential 

Elementary excitations of paramagnet The gap to all excitations with non-zero S remains finite across this transition, but the gap to spin singlet excitations vanishes. There is no local order parameter and the transition is described by a Z 2 gauge theory For smaller J, there can be a confinement- deconfinement transition at which the S=1/2 spinons are liberated: these are neutral, S=1/2 quasiparticles N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991). X.G. Wen, Phys. Rev. B 44, 2664 (1991). T. Senthil and M. P. A. Fisher Phys. Rev. B 62, 7850 (2000).  P.W. Anderson, Science 235, 1196 (1987).

Fractionalization in atomic gases = Two F=1 atoms in a spin singlet pair “Ordinary” spin-singlet insulator Quasiparticle excitation Quasiparticle carries both spin and “charge” E. Demler and F. Zhou, cond-mat/

Quasiparticle excitation in a fractionalized spin-singlet insulator Quasiparticle carries “charge” but no spin Spin-charge separation

Conclusions I.Study of quantum phase transitions offers a controlled and systematic method of understanding many-body systems in a region of strong entanglement. II.Atomic gases offer many exciting opportunities to study quantum phase transitions because of ease by which system parameters can be continuously tuned. III.Promising outlook for studying quantum systems with “fractionalized” excitations (only observed so far in quantum Hall systems in condensed matter).