Neutrinoless Double Beta Decay – Status of GERDA

Slides:



Advertisements
Similar presentations
December 4, 2007Béla Majorovits,MPI für Physik, München Excellence Cluster Universe – Science Week 2007 The Germanium Detector Array (GERDA) for the search.
Advertisements

COBRA A new Approach to -Decay UK HEP Forum, Abingdon, May 11 th, 2003 Daniel Muenstermann University of Dortmund COBRA.
S. Belogurov, ITEP/INR Moscow GERDA experiment New experiment for the search of neutrinoless double beta decay of 76 Ge at LNGS GERmanium Detector.
GERDA General Meeting, Tübingen, November 2005 Nitrogen and argon radiopurity Grzegorz Zuzel for TG11 MPI-K Heidelberg MPI-K Heidelberg.
Activity for the Gerda-specific part Description of the Gerda setup including shielding (water tank, Cu tank, liquid Nitrogen), crystals array and kapton.
INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science – MPD.
LNGS (GERmanium Detector Assembly Stefan Schönert MPIK Heidelberg NOW 2004, Sept. 12, 2004.
Neutrinoless Double Beta Decay – Status of GERDA
September 14, 2007Hardy Simgen, TAUP 2007 / Sendai1 Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
M. Di Marco, P. Peiffer, S. Schönert
GERDA: GERmanium Detector Array
Daniel Lenz, University of Wisconsin, Madison 11/05/ APS DNP Cryogenic search for neutrinoless double beta decay Daniel Lenz on behalf of the CUORE.
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
GERmanium Detector Array – a Search for Neutrinoless Double Beta Decay X. Liu - MPI für Physik, München Symposium – symmetries and phases in the universe,
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
Status of COBRA 6 th SNOLAB Workshop, Picture courtesy
Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.
Task Group 2 Iris Abt, Michael Altmann, Kevin Kroeninger, Bela Majorovits, Franz Stelzer, Xiang Liu 1.Detector Development 2.Suspension & Cabling 3.MC.
Sensitivity to half life of 0νββ decay (left) and to effective Majorana neutrino mass (right) of an experiment as a function of exposure for different.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science – MPD.
Operation of bare Ge-diodes in LN/LAr 1 st IDEA meeting Como, April 8 (2004) Stefan Schoenert.
Planned Transregional Collaborative Research Center TR27: Neutrinos and Beyond Project A4: Development of segmented germanium detectors for the investigation.
M. Wojcik Instytute of Physics, Jagiellonian University
DarkSide: a Free Background Experiment Maria Bossa LNGS Seminar IPRD13 Oct 10, 2013.
May 6, 2006Henderson Dusel Capstone Meeting Low Background Counting A Facility Wish List for the New Underground Laboratory F. Calaprice.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
Béla Majorovits for the GERDA collaboration ICHEP 2012, Melbourne, Australia, July Béla Majorovits for the GERDA collaboration Status and plans.
What is MaGe? MJ outputGERDA output MaGe is a Monte Carlo simulation package dedicated to experiments searching for 0 2  decay in 76 Ge. Created by the.
Half Day IoP Meeting: Neutrinoless Double Beta Decay, University College London, Great Britain The GERDA Experiment at Gran Sasso Grzegorz Zuzel.
VIeme rencontres du Vietnam
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
The GERDA experiment L. Pandola INFN, Gran Sasso National Laboratory for the GERDA Collaboration WIN2009, Perugia, September 17 th 2009.
MaGe framework for Monte Carlo simulations MaGe is a Geant4-based Monte Carlo simulation package dedicated to experiments searching for 0 2  decay of.
CTF at Gran Sasso (overview of the hardware) Richard Ford (SNOLAB) (who has not been in the collaboration since 2004) March 19 th 2010.
Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC Cracow, Poland The GERDA Experiment at Gran.
Telescope Germanium Vertical Telescope Germanium Vertical JINR Dubna, Russia CSNSM Orsay, France CTU Prague, Czech Republic RRC - Kurchatov Institute Moscow,
Experiment [1] M. Di Marco, P. Peiffer, S. Schonert, LArGe: Background suppression using liquid argon scintillation for 0νββ - decay search with enriched.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
CUTAPP05 A. Caldwell/MPI.
TG 11 overview / Material screening Hardy Simgen MPI für Kernphysik for Task Group 11.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
GERDA – a Search for Neutrinoless Double Beta Decay MPI für Physik, München Neutrinoless double beta decay and the GERDA experimentThe detector array and.
M.Altmann, GERDA Status Report SNOLAB Workshop IV, Investigating Neutrinoless Double Beta Decay Status of the GERDA Experiment Michael Altmann.
PMN07 Blaubeuren Segmented germanium detectors in 0νββ-decay experiments Kevin Kröninger (Max-Planck-Institut für Physik, München)
Phase I: Use available 76 Ge diodes from Heidelberg- Moscow and IGEX experiments (~18 kg). Scrutinize with high siginificance current evidence. Phase II:
November 19, 2007Hardy Simgen, IDEA-Meeting Paris Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
MPI für Physik, Fachbeirat, Béla Majorovits The GERDA experiment Béla Majorovits.
1 DarkSide Collaboration APC Paris, France Augustana College, USA Black Hills State University, USA Fermilab, USA IHEP, China INFN Laboratori Nazionali.
IDEA Meeting, , Paris, France New results on the Argon purification Grzegorz Zuzel Max-Planck-Institut für Kernphysik, Heidelberg.
JINR group V. Brudanin, V. Egorov, K. Gusev, A. Klimenko, O. Kochetov, I. Nemchenok, V. Sandukovsky, A. Smolnikov, M.Shirchenko, D. Zinatulina Project.
Enter the DarkSide Stefano Davini University of Houston RICAP-13.
1 Cary Kendziora Fermi National Laboratory Cary Kendziora Fermi National Laboratory CEC-ICMC 2013 Anchorage Alaska – June, 2012.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
Towards pulse shape calculation and analysis for the GERDA experiment Kevin Kröninger, MPI für Physik International School of Nuclear Physics, Erice 2005.
B. Majorovits (MPI für Physik) for the collaboration
The COBRA Experiment: Future Prospects
Overview of GERDA simulation activities with MaGe
Prompt Gamma Activation Analysis on 76Ge
GERDA Collaboration Meeting,
The Heidelberg Dark Matter Search Experiment
Neutrino Telescope Stefan Schönert (TUM)
Munich GERDA/Majorana MC Meeting
GERDA Test Stands for Segmented Germanium Detectors
Presentation transcript:

Neutrinoless Double Beta Decay – Status of GERDA Ludwig Niedermeier, Universität Tübingen IDEA, Blaubeuren, 4.7.2007

Double Beta Decay ββ

Neutrinoless Double Beta Decay p n p _ e, right-handed W- W- e, right-handed _ e- e- e, left-handed _ e- e- _ e, right-handed W- W- n p n p 20 conditions: Majorana particle ΔL=2 Lepton number violation P( )~(m/E)² for m>0  =  _ e, left-handed _ E (e–+e–) in keV

From 0ν2β to Neutrino Mass Exp. determination of 20 half life 76Ge 1.4·1026 y N Number of Ge atoms S 20 signal B Background signals b Bgr. rate (kg s keV)-1 m Ge mass M Ge mol. weight a 76Ge enrichment  Detection efficiency E Energy binning t Measurement time GERDA Phase II 3y 35kg GERDA Phase I 1y 15kg  Effective Neutrino Mass Determination or Limit BACKGROUND–FREE (T1/2~t) BACKGROUND >0 (T1/2~√¯¯) t

Impact on Neutrino Physics mee [eV] GERDA I Hd-M ‚best value‘ PLB586(2004)198 GERDA II 1t 76Ge GERDA/Majorana Current status: m²12 = (7.92±0.07)·10-5 eV² (solar ) m²23 = (2.6±0.4)·10-3 eV² (atm. ) normal hierarchy or inverse hierarchy ? (inverse) 3 1 (normal) m²12 2 m²23 m²23 2 m²12 m² in eV 1 3 ↔mee absolute mass scale

Enriched Ge detectors (a=86%) Two completed experiments Heidelberg-Moscow IGEX 76Ge [Klapdor-K. et al, Phys.Lett. B586(2004)198] Best fit: T2β0= 1.2·1025 y [Phys.Rev.D65:092007,2002]: Enriched Ge detectors (a=86%) 8.9 kg y of 76Ge data T1/2(2β0ν) > 1.57×1025 y (90% C.L.) A.M. Bakalyarov, A. Ya. Balysh, S. T. Belyaev, V. I. Lebedev, S. V. Zhukov (Kurchatov Institute, Moscow) T1/2(2β0ν) > 1.55 · 1025 y (90% C.L.) [Письма в ЭЧАЯ. 2005. T.2, No.2(125). C.21-28]

Gerda - Motivation – Improvement of mee sensitivity – Check of former publications Improve Background by ultra-pure shielding HPGe detectors in Liquid Argon GERDA  10-3 (kg·y·keV)-1 [IGEX 0.1–0.3 (kg·y·keV)-1] [Hd-M 0.17 (kg·y·keV)-1] Hd-Moscow GERDA

Gerda – Detector Overview LNGS 3600 mwe Phase I 15 kg y at 10-2 (keV kg y)-1 T1/20ν> 1.2·1025y (HdM: 1.2·1025y) Phase II 100 kg y at 10-3 (keV kg y)-1 T1/20ν> 1.4·1026y Phase III 1 ton 76Ge exp. (GERDA/Majorana) depending on Phase I/II outcome Background goal 10-4 (keV kg y)-1 Water shield Cherenkov muon veto LAr shield in steel cryostat ~20 Ge crystals on 7 Cu strings ~35kg of 76Ge (a>85%) Qββ=2039 keV

Ge Detectors Phase I 5 HdM HPGe: p-type 11kg, ΔE= 2–3 keV 3 IGEX HPGe: p-type 6.5kg in Nov 05 from Canfranc to LNGS restored (cooled)  ΔE≈2.3 keV Refurbishment at Canberra/Olen into ultra-pure detector holders (materials used: Copper, PTFE, silicon) Underground storage possibility in Hades 500mwe Tested at GDL@LNGS (former LArGe): resolution, efficiency, leakage current, cooling cycles Internal background estimation: 60Co 0.5y exposure history ~3·10-3 /(kg keV y) Detector holders (Cu/PTFE): <1.5·10-3 /(kg keV y)

Ge Detectors Phase II Available: GeO2 with 37.5 kg of 76Ge (a=87%)  ~10 HPGe n-type (~20 kg) 3x6-fold segmented Production: Purification 6N (PPM Göttingen) Monozone refinement 8-9N (PPM) Crystal pulling (IKZ Berlin) Detector production (Canberra) First depGe (20kg) tests under way CZ puller installation, 1st crystals (Si, Ge) Internal background estimation: 60Co ~40d exposure during fabrication 3.5·10-5 /(kg keV y) 68Ge ~40d exposure during fabrication 1.3·10-3 (1st) ~5·10-4 (2nd y) Suspension+cabling+electronics: <2·10-3 /(kg keV y) (with segment anticoinc.)

front-end electronics 18-fold segmented detector Ge Detectors Phase II front-end electronics 7 strings with 5 detectors 18-fold segmented detector 3 layers, 6 angular

GERDA – Suppression Methods PSA: Single Site ↔ Multi Site Crystal Segmentation 60Co DEP 1592keV Bi-212  1620keV @ 2MeV: suppression by ~10 SSE smaller rise-time Tests (MPI): 1.6kg n-type HPGe 3x6-fold E resolution of segments: 2.3–4.0 keV @ 1332keV

GERDA – Crystal Segmentation SSE MSE Suppression factors simulated [NIMA 570 (2007) 479] anticonicidence: Crystal- Segment-  talk of Kevin Kröninger

GERDA – Cryostat Stainless steel cryostat (3cm double wall) 228Th <830 μBq/kg 226Ra <810 μBq/kg <1.7·10-5/kg keV y <2.3·10-6/kg keV y Inner Cu shield 3 – 6cm 228Th <39 μBq/kg 226Ra <50 μBq/kg (negligible compared to steel) Superinsulation 228Th <2.2·10-6/kg keV y 226Ra <1.4·10-6/kg keV y Liquid Ar (~50m³) Initial: 222Rn ~ 0.4 – 4 mBq/m³ (STP) Required: 0.5 µBq/m³ [ <10−4 /(kg keV y)]  LAr Purification of f~1000 needed Proven for gas phase Achievable for liquid phase

Gerda Muon Veto – A Water Cherenkov Detector plastic scintillator 66 PMTs cryostat Ge detectors water tank reflector VM2000 ‚lower pillbox‘

Simulations – Muon distribution in crystals E>120MeV ~10 years 1.5<E<3MeV [cts/(kg keV y)] det. anticoinc Phase I segm. antico Phase II with 95% veto direkt μ ~2·10-3 ~2·10-4 ~10-5 μ-induced [NIMA570(2007)149] (1.89±0.04)10-2 (1.6±0.1)10-3 (4.0±0.4)10-4 ~2·10-5  talk about n-induced 77Ge/77mGe (Georg Meierhofer)

GDL (Gerda Detector Laboratory) LArGe Test Bench Dewar Cryostat (1.3m³) Pb, Cu -shielded In construction until end of 2007 Existing !! Volume 70 l Cu infrared shield Now: Liquid Ar 5.0 1.6kg, p-type Tests of prototype Ge detectors in LAr

With Phase I prototype: 36Ar 0νECEC Examination of 0vECEC : 36Ar + 2e-  36S + γ(431keV) - 1.6kg HPGe in 70l dewar with natural liquid Ar (0.336% 36Ar) - 2.5cm passive lead shield T1/20νECEC > 1.9·1018 y (68% C.L.) LArGe (~15kg y)  1022 –1023 y limited by 39Ar ~3/(kg keV y)

Phase I Phase II Phase III Gerda – Schedule Safety concept approved by LNGS HPGe prototype testing in GDL ongoing Water tank bottom plate in construction Cryo tank: installed by end of 2007 Water tank completion: first half of 2008 Muon veto & Infrastructure (building, clean room, lock): fall 2008 Commissioning: beginning of 2009 Insertion of Phase I detectors and data taking (1 year): 2009 Insertion of Phase II detectors Data taking Phase II (~3 years) 1 ton 76Ge exp. GERDA+Majorana depending on Phase I+II outcome Construction Phase I Phase II Phase III

Gerda Collaboration INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy Joint Institute for Nuclear Research, Dubna, Russia Max-Planck-Institut für Kernphysik, Heidelberg, Germany Jagellonian University, Krakow, Poland Università di Milano Bicocca e INFN Milano, Milano, Italy Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia Institute for Theoretical and Experimental Physics, Moscow, Russia Russian Research Center Kurchatov Institute, Moscow, Russia Max-Planck-Institut für Physik, München, Germany Dipartimento di Fisica dell’Università di Padova e INFN Padova, Padova, Italy Physikalisches Institut, Universität Tübingen, Germany EC-JRC-IRMM, Geel, Belgium

Ultra-large Ge detector array, m(76Ge) ~ 1 ton Outlook: Majorana Ultra-large Ge detector array, m(76Ge) ~ 1 ton Proposed (2003) 500 kg · 5 y a = 86%  T1/20ν = 1027 y b = 10-3/(kg·ROI·y) mee ~ 0.04 eV Passive shielding: 10cm of old Pb (High Z !!) 40cm of common Pb Active shielding: μ veto (10cm plastic sc.) investigate secondary n Depth required: 4500 mwe Internal bgr estimated to 1–10 ·10-3/(kg keV a) from 68Ge, 60Co reducable by factor ~20 (PSA+Segm.) Low energy bgr estimated to 2/(kg keV y), competitive with dark matter experiments

Outlook: Majorana 2007 Submission of R&D for 1 ton detector and for prototype 2007-2011 60 kg Ge prototype det. (‚Majorana Demonstrator‘) = 30 kg of 76Ge (86%), 30 kg of natural Ge (40 kg p-type, 20 kg n-type) n-type, 6x6 segm. p-type, point contact det. pos. reconstr. 1-2mm low threshold 0.3 keV PSA f=3 for 60Co highly sensitive PSA  120 kg y at 10-3 /(kg·ROI·y) T1/20v > 1.6·1026 y mee < 0.19 eV (90% C.L.) 2009-2011 Majorana Demonstrator construction 2011-2013 Operation, analysis

Outlook: Gerda and Majorana Low Z inner shielding (ultra-pure LAr) LNGS 3600 mwe Water Cherenkov muon veto High Z inner shielding (ultra-pure Pb) Deep underground >4500 mwe Plastic scintillator muon veto Valuable Exchange between GERDA and Majorana