Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 1 Linear Programming Overview Formulation of the problem and example Incremental,

Slides:



Advertisements
Similar presentations
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Advertisements

3.4 Linear Programming 10/31/2008. Optimization: finding the solution that is either a minimum or maximum.
Incremental Linear Programming Linear programming involves finding a solution to the constraints, one that maximizes the given linear function of variables.
Lecture 9 Support Vector Machines
Linear Programming – Simplex Method
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2002 Lecture 8 Tuesday, 11/19/02 Linear Programming.
Dragan Jovicic Harvinder Singh
WS Algorithmentheorie 03 – Randomized Algorithms (Primality Testing) Prof. Dr. Th. Ottmann.
Ch 2. 6 – Solving Systems of Linear Inequalities & Ch 2
Linear Programming?!?! Sec Linear Programming In management science, it is often required to maximize or minimize a linear function called an objective.
Algorithms Lecture 10 Lecturer: Moni Naor. Linear Programming in Small Dimension Canonical form of linear programming Maximize: c 1 ¢ x 1 + c 2 ¢ x 2.
A Randomized Polynomial-Time Simplex Algorithm for Linear Programming Daniel A. Spielman, Yale Joint work with Jonathan Kelner, M.I.T.
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part IV Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Delaunay Triangulation Computational Geometry, WS 2006/07 Lecture 11 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Orthogonal Range Searching 3Computational Geometry Prof. Dr. Th. Ottmann 1 Orthogonal Range Searching 1.Linear Range Search : 1-dim Range Trees 2.2-dimensional.
Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 1 Linear Programming Overview Formulation of the problem and example Incremental,
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2006 Lecture 9 Wednesday, 11/15/06 Linear Programming.
Orthogonal Range Searching-1Computational Geometry Prof. Dr. Th. Ottmann 1 Orthogonal Range Searching 1.Linear Range Search : 1-dim Range Trees 2.2-dimensional.
Lecture 5: Orthogonal Range Searching Computational Geometry Prof. Dr. Th. Ottmann 1 Orthogonal Range Searching 1.Linear Range Search : 1-dim Range Trees.
Design and Analysis of Algorithms
Probabilistic Analysis and Randomized Algorithms
Duality and Arrangements Computational Geometry, WS 2007/08 Lecture 6 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 1 Linear Programming Overview Formulation of the problem and example Incremental,
Accelerated Cascading Advanced Algorithms & Data Structures Lecture Theme 16 Prof. Dr. Th. Ottmann Summer Semester 2006.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 – Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 1 Linear Programming Overview Formulation of the problem and example Incremental,
Lecture 10 : Delaunay Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 Overview Motivation. Triangulation of Planar Point Sets. Definition.
Linear Programming Computational Geometry, WS 2007/08 Lecture 7 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann Polygon Triangulation Motivation: Guarding art galleries Art gallery theorem.
Parallel Merging Advanced Algorithms & Data Structures Lecture Theme 15 Prof. Dr. Th. Ottmann Summer Semester 2006.
Linear Programming Computational Geometry, WS 2007/08 Lecture 7, Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Lecture 8 : Arrangements and Duality Computational Geometry Prof. Dr. Th. Ottmann 1 Duality and Arrangements Duality between lines and points Computing.
Point Location Computational Geometry, WS 2007/08 Lecture 5 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für.
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 - Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Lecture 6: Point Location Computational Geometry Prof. Dr. Th. Ottmann 1 Point Location 1.Trapezoidal decomposition. 2.A search structure. 3.Randomized,
Lecture outline Support vector machines. Support Vector Machines Find a linear hyperplane (decision boundary) that will separate the data.
Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 1 Linear Programming Overview Formulation of the problem and example Incremental,
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Selection1. 2 The Selection Problem Given an integer k and n elements x 1, x 2, …, x n, taken from a total order, find the k-th smallest element in this.
Duality and Arrangements Computational Geometry, WS 2006/07 Lecture 7 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Optimization of Linear Problems: Linear Programming (LP) © 2011 Daniel Kirschen and University of Washington 1.
Linear Programming Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Linear programming is a strategy for finding the.
Computational Geometry Piyush Kumar (Lecture 5: Linear Programming) Welcome to CIS5930.
Linear Programming Piyush Kumar. Graphing 2-Dimensional LPs Example 1: x y Feasible Region x  0y  0 x + 2 y  2 y  4 x  3 Subject.
UNC Chapel Hill M. C. Lin Linear Programming Reading: Chapter 4 of the Textbook Driving Applications –Casting/Metal Molding –Collision Detection Randomized.
ECE 556 Linear Programming Ting-Yuan Wang Electrical and Computer Engineering University of Wisconsin-Madison March
Graphing Linear Inequalities in Two Variables Chapter 4 – Section 1.
Systems of Inequalities in Two Variables Sec. 7.5a.
CSE4334/5334 DATA MINING CSE4334/5334 Data Mining, Fall 2014 Department of Computer Science and Engineering, University of Texas at Arlington Chengkai.
UNC Chapel Hill M. C. Lin Randomized Linear Programming For any set of H of half-planes, there is a good order to treat them. Thus, we can improve the.
Center for Graphics and Geometric Computing, Technion 1 Computational Geometry Chapter 9 Line Arrangements.
Approximation Algorithms based on linear programming.
Computational Geometry
Support Vector Machines (SVM)
Digital Lesson Linear Programming.
Digital Lesson Linear Programming.
Selection Selection 1 Quick-Sort Quick-Sort 10/30/16 13:52
Uri Zwick – Tel Aviv Univ.
Online Learning Kernels
CHAPTER 4. LINEAR PROGRAMMING
Lecture 11 Overview Self-Reducibility.
Max Z = x1 + x2 2 x1 + 3 x2  6 (1) x2  1.5 (2) x1 - x2  2 (3)
CMPS 3130/6130 Computational Geometry Spring 2017
Linear Programming Example: Maximize x + y x and y are called
Graphical Solution of Linear Programming Problems
Dr. Arslan Ornek DETERMINISTIC OPTIMIZATION MODELS
Quick-Sort 5/25/2019 6:16 PM Selection Selection.
Presentation transcript:

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 1 Linear Programming Overview Formulation of the problem and example Incremental, deterministic algorithm Randomized algorithm Unbounded linear programs Linear programming in higher dimensions

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 2 Algorithm 2D-LP Input:A 2-Dimensional Linear Program (H, c ) Output: Either one optimal vertex or  or a ray along which (H, c ) is unbounded. if UnboundedLP(H, c ) reports (H, c ) is infeasible then return UnboundedLP(H, c ) elseh 1 := h; h 2 := h´ ; v 2 := l 1  l 2 h 3,...,h n := remaining half-planes of H for i:= 3 to n do if v i-1  h i then v i :=v i-1 else S i-1 := H i-1  * l i v i := 1-dim-LP(S i-1, c ) if v i not exists then return  return v n Running time: O(n²)

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 3 New problem Find the point x on l i that maximizes cx, subject to the constraints x  h j, for 1  j  i –1 Observation: l i  h j is a ray Let S i-1 := { h 1  l i,..., h i-1  l i } 1.1-dim-LP{S i-1, c } 2.p 1 = s 1 3.for j := 2 to i-1 do 4. p j = p j-1  s j 5.if p i-1   then 6. return the optimal vertex of p i-1 else 7. return  Time: O(i)

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 4 Sequences vivi GoodGood BadBad

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 5 Optimal Vertex h1h1 h2h2 h3h3 h4h4 v 3 = v 4 c h1 h1 h2 h2 h3 h3 h4 h4 h5 h5 c v4 v4 v5v5

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 6 Algorithm 2D-LP Input:A 2-Dimensional Linear Program (H, C ) Output: Either one optimal vertex or  or a ray along which (H, C ) is unbounded. if UnboundedLP(H, C )  {h, h´} then return UnboundedLP(H, C ) h 1 := h; h 2 := h´ ; v 2 := l 1  l 2 h 3,...,h n := remaining half-planes of H for i:= 3 to n do if v i-1  h i then v i := v i-1 else S i-1 := H i-1  * l i v i := 1-dim-LP(S i-1, C ) if v i does not exist then return  return v n Running time: O(n²)

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 7 Sequences vivi GoodGood BadBad

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 8 Algorithm 2D-LP Input:A 2-Dimensional Linear Program (H, C ) Output: Either one optimal vertex or  or a ray along which (H, C ) is unbounded. if UnboundedLP(H, C )  {h, h´} then return UnboundedLP(H, C ) h 1 := h; h 2 := h´ ; v 2 := l 1  l 2 h 3,...,h n := remaining half-planes of H compute a random permutation h 3,..., h n for i:= 3 to n do if v i-1  h i then v i :=v i-1 else S i-1 := H i-1  * l i v i := 1-dim-LP(S i-1, C ) if v i does not exist then return  return v n Running time: O(n²)

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 9 Randomization Theorem: The 2-dimensional linear programming problem with n constraints can be solved in O(n) randomized expected time using worst-case linear storage.

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 10 Random Variable x i X i = E[x i ] is the probability that v i-1  h i