Biotechnology Chapter 17. 2 DNA Manipulation The molecular biology revolution started with the discovery of restriction endonucleases -Enzymes that cleave.

Slides:



Advertisements
Similar presentations
Manipulating DNA: tools and techniques
Advertisements

Biotechnology Chapter 11.
Recombinant DNA technology
Biotechnology Guess the lamb’s name
Recombinant DNA Introduction to Recombinant DNA technology
Biotechnology Chapter 17.
Biotechnology & Recombinant DNA. What is biotechnology?  Using living microorganisms or cell components to make products Often via genetic engineering.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 17.
Lecture ONE: Foundation Course Genetics Tools of Human Molecular Genetics I.
Genetic Engineering Biotechnology Molecular Cloning Recombinant DNA.
Biotechnology Chapter 20.
Manipulating the Genome: DNA Cloning and Analysis 20.1 – 20.3 Lesson 4.8.
Chapter 20 Reading Quiz Genes from two different sources that are combined result in ____. Where are “sticky ends” found? What structures, naturally found.
DNA TECHNOLOGY DNA recombination or genetic engineering is the direct manipulation of genes for practical purposes.
Biotechnology Packet #26 Chapter #9. Introduction Since the 1970’s, humans have been attempted to manipulate and modify genes in a way that was somewhat.
Chapter 20: Biotechnology. Essential Knowledge u 3.a.1 – DNA, and in some cases RNA, is the primary source of heritable information (20.1 & 20.2)
Genetic Engineering Do you want a footer?.
Chapter 20~DNA Technology & Genomics. Who am I? Recombinant DNA n Def: DNA in which genes from 2 different sources are linked n Genetic engineering:
AP Biology: Chapter 14 DNA Technologies
DNA Technology Ch. 20 Figure 20.1 An overview of how bacterial plasmids are used to clone genes.
Gene Technology Chapter 16.
Chapter 19 – Molecular Genetic Analysis and Biotechnology
AP Biology Ch. 20 Biotechnology.
-The methods section of the course covers chapters 21 and 22, not chapters 20 and 21 -Paper discussion on Tuesday - assignment due at the start of class.
Chapter 20 DNA Technology. DNA Cloning  Gene cloning allows scientists to work with small sections of DNA (single genes) in isolation. –Exactly what.
1 Genetics Faculty of Agriculture and Veterinary Medicine Instructor: Dr. Jihad Abdallah Topic 15:Recombinant DNA Technology.
1 Genetics Faculty of Agriculture Instructor: Dr. Jihad Abdallah Topic 13:Recombinant DNA Technology.
DNA Technology Chapter 20.
Biotechnology Packet #12 Chapter #9. Introduction Since the 1970’s, humans have been attempted to manipulate and modify genes in a way that was somewhat.
End Show Slide 1 of 32 Copyright Pearson Prentice Hall Manipulating DNA.
Chapter 16 Gene Technology. Focus of Chapter u An introduction to the methods and developments in: u Recombinant DNA u Genetic Engineering u Biotechnology.
DNA Technologies.
Recombinant Technololgy
Biotechnology Chapter DNA Manipulation The molecular biology revolution started with the discovery of restriction endonucleases -Enzymes that cleave.
Biotechnology and Genetic Engineering. Human Cloning-The Science In The News.
Chapter 20 Reading Quiz 1. Genes from two different sources that are combined result in ____. 2. Where are “sticky ends” found? 3. What structures,
DNA Technology. Overview DNA technology makes it possible to clone genes for basic research and commercial applications DNA technology is a powerful set.
Biotechnology.
19.1 Techniques of Molecular Genetics Have Revolutionized Biology
DNA TECHNOLOGY AND GENOMICS CHAPTER 20 P
Biotechnology Chapter 17.
Researchers use genetic engineering to manipulate DNA. Section 2: DNA Technology K What I Know W What I Want to Find Out L What I Learned.
KEY CONCEPT Biotechnology relies on cutting DNA at specific places.
GENETIC ENGINEERING CHAPTER 20
Genetic Engineering Genetic engineering is also referred to as recombinant DNA technology – new combinations of genetic material are produced by artificially.
Chapter 20: DNA Technology and Genomics - Lots of different techniques - Many used in combination with each other - Uses information from every chapter.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 17 LECTURE SLIDES To run the animations you must be.
NOTES - CH 15 (and 14.3): DNA Technology (“Biotech”)
Genetic Engineering/ Recombinant DNA Technology
DNA Technology Ch. 20. The Human Genome The human genome has over 3 billion base pairs 97% does not code for proteins Called “Junk DNA” or “Noncoding.
RECOMBINANT DNA DNA THAT CONTAINS DNA SEGMENTS OR GENES FROM DIFFERENT SOURCES. DNA TRANSFERRED FROM ONE PART OF A DNA MOLECULE TO ANOTHER, FROM ONE CHROMOSOME.
CHAPTER 20 BIOTECHNOLOGY. Biotechnology – the manipulation of organisms or their components to make useful products Biotechnology is used in all facets.
Viral and Bacterial Genomes & DNA Technology. Viruses Tiny; much smaller than a bacteria Basic structure: – Nucleic acid (DNA or RNA) enclosed in a protein.
1 General Biology Chapter 11 Gene Technology. 2 Genetic Engineering Recombinant DNA is made when a DNA fragment is put into the DNA of a vector Gel electrophroesis.
Biotechnology.
Biotechnology Chapter 17.
DNA Technology and Genomics
DNA Technologies (Introduction)
DNA Technology Packet #27.
Chapter 20: DNA Technology and Genomics
DNA Tools & Biotechnology
DNA Technology Now it gets real…..
Chapter 20 – DNA Technology and Genomics
Chapter 14 Bioinformatics—the study of a genome
Recombinant DNA Technology
DNA Tools & Biotechnology
Recombinant DNA Technology
DNA Technology Packet #50 Chapter #20.
Chapter 11 Gene Technology (Biotechnology)
Chapter 20: DNA Technology and Genomics
Presentation transcript:

Biotechnology Chapter 17

2 DNA Manipulation The molecular biology revolution started with the discovery of restriction endonucleases -Enzymes that cleave DNA at specific sites These enzymes are significant in two ways 1. Allow a form of physical mapping that was previously impossible 2. Allow the creation of recombinant DNA molecules (from two different sources)

3 DNA Manipulation Restriction enzymes recognize DNA sequences termed restriction sites There are two types of restriction enzymes: -Type I = Cut near the restriction site -Rarely used in DNA manipulation -Type II = Cut at the restriction site -The sites are palindromes -Both strands have same sequence when read 5 ’ to 3 ’

4 DNA Manipulation Type II enzymes produce staggered cuts that generate “sticky ends” -Overhanging complementary ends Therefore, fragments cut by the same enzyme can be paired DNA ligase can join the two fragments forming a stable DNA molecule

5

6 Gel Electrophoresis A technique used to separate DNA fragments by size The gel (agarose or polyacrylamide) is subjected to an electrical field The DNA, which is negatively-charged, migrates towards the positive pole -The larger the DNA fragment, the slower it will move through the gel matrix DNA is visualized using fluorescent dyes

7

8

9 Transformation Transformation is the introduction of DNA from an outside source into a cell Natural transformation occurs in many species -However, not in E. coli, which is used routinely in molecular biology labs -Artificial transformation techniques have been developed to introduce foreign DNA into it

10 Molecular Cloning A clone refers to a genetically identical copy Molecular cloning is the isolation of a specific DNA sequence (usually protein-encoding) -Sometimes called gene cloning The most flexible and common host for cloning is E. coli Propagation of DNA in a host cell requires a vector

11 Vectors Plasmids are small, circular extrachromosomal DNA molecules -Used for cloning small pieces of DNA -Have three important components 1. Origin of replication 2. Selectable marker 3. Multiple cloning site (MCS)

12 Vectors

13 Vectors Phage vectors are modified bacterial viruses -Most based on phage lambda ( ) of E. coli -Used to clone inserts up to 40 Kbp -Have two features not shared with plasmid vectors -They kill their host cells -They have linear genomes -Middle replaced with inserted DNA

14 Vectors

15 Vectors Artificial chromosomes -Used to clone very large DNA fragments -Bacterial artificial chromosomes (BACs) -Yeast artificial chromosomes (YACs)

16 DNA Libraries A collection of DNA fragments from a specific source that has been inserted into host cells A genomic library represents the entire genome A cDNA library represents only the expressed part of the genome -Complementary DNA (cDNA) is synthesized from isolated mRNA using the enzyme reverse transcriptase

17

18

19

20 DNA Libraries Molecular hybridization is a technique used to identify specific DNAs in complex mixtures -A known single-stranded DNA or RNA is labeled -It is then used as a probe to identify its complement via specific base-pairing -Also termed annealing

21 DNA Libraries Molecular hybridization is the most common way of identifying a clone in a DNA library -This process involves three steps: 1. Plating the library 2. Replicating the library 3. Screening the library

22

23 DNA Analysis Restriction maps -Molecular biologists need maps to analyze and compare cloned DNAs -The first maps were restriction maps -Initially, they were created by enzyme digestion & analysis of resulting patterns -Many are now generated by computer searches for cleavage sites

24 DNA Analysis Southern blotting -A sample DNA is digested by restriction enzymes & separated by gel electrophoresis -Gel is transferred (“blotted”) onto a nitrocellulose filter -Then hybridized with a cloned, radioactively-labeled DNA probe -Complementary sequences are revealed by autoradiography

25

26

27

28 DNA Analysis Northern blotting -mRNA is electrophoresed and then blotted onto the filter Western blotting -Proteins are electrophoresed and then blotted onto the filter -Detection requires an antibody that can bind to one protein

29 DNA Analysis RFLP analysis -Restriction fragment length polymorphisms (RFLPs) are generated by point mutations or sequence duplications -These fragments are often not identical in different individuals -Can be detected by Southern blotting

30

31 DNA Analysis DNA fingerprinting -An identification technique used to detect differences in the DNA of individuals -Makes use of a variety of molecular procedures, including RFLP analysis -First used in a US criminal trial in Tommie Lee Andrews was found guilty of rape

32 DNA Analysis

33 DNA Analysis DNA sequencing -A set of nested fragments is generated -End with known base -Separated by high- resolution gel electrophoresis, resulting in a “ladder” -Sequence is read from the bottom up

34 DNA Analysis DNA sequencing -The enzymatic method was developed by Frederick Sanger -Dideoxynucleotides are used as chain terminators in DNA synthesis reactions

35

36 DNA Analysis DNA sequencing -The enzymatic technique is powerful but is labor intensive and time-consuming -The development of automated techniques made sequencing faster and more practical -Fluorescent dyes are used instead of radioactive labels -Reaction is done in one tube -Data are assembled by a computer

37

38 DNA Analysis Polymerase chain reaction (PCR) -Developed by Kary Mullis -Allows the amplification of a small DNA fragment using primers that flank the region -Each PCR cycle involves three steps: 1. Denaturation (high temperature) 2. Annealing of primers (low temperature) 3. DNA synthesis (intermediate temperature) -Taq polymerase

39 After 20 cycles, a single fragment produces over one million (2 20 ) copies!

40 After 20 cycles, a single fragment produces over one million (2 20 ) copies! (Cont.)

41 DNA Analysis Polymerase chain reaction (PCR) -Has revolutionized science and medicine because it allows the investigation of minute samples of DNA -Forensics -Detection of genetic defects in embryos -Analysis of mitochondrial DNA from early human species

42 DNA Analysis Yeast two-hybrid system -Used to study protein-protein interactions -Gal4 is a transcriptional activator with a modular structure -The Gal4 gene is split into two vectors -Baitvector: has DNA-binding domain -Prey vector: has transcription-activating domain -Neither of these alone can activate transcription

43 DNA Analysis Yeast two-hybrid system -When other genes are inserted into these vectors, they produce fusion proteins -Contain part of Gal4 and the protein of interest -If the proteins being tested interact, Gal4 function will be restored -A reporter gene will be expressed -Detected by an enzyme assay

44

45

46 Genetic Engineering Has generated excitement and controversy Expression vectors contain the sequences necessary to express inserted DNA in a specific cell type Transgenic animals contain genes that have been inserted without the use of conventional breeding

47 Genetic Engineering In vitro mutagenesis -Ability to create mutations at any site in a cloned gene -Has been used to produce knockout mice, in which a known gene is inactivated -The effect of loss of this function is then assessed on the entire organism -An example of reverse genetics

48

49

50

51 Medical Applications Human proteins -Medically important proteins can be produced in bacteria -Human insulin -Interferon -Atrial peptides -Tissue plasminogen activator -Human growth hormone

52 Medical Applications

53 Medical Applications Vaccines -Subunit vaccines: Genes encoding a part of the protein coat are spliced into a fragment of the vaccinia (cowpox) genome -DNA vaccines: Depend on the cellular immune response (not antibodies)

54 Medical Applications

55 Medical Applications Gene therapy -Adding a functional copy of a gene to correct a hereditary disorder -Severe combined immunodeficiency disease (SCID) illustrates both the potential and the problems -Successful at first, but then patients developed a rare leukemia

56 Agricultural Applications Ti (tumor-inducing) plasmid is the most used vector for plant genetic engineering -Obtained from Agrobacterium tumefaciens, which normally infects broadleaf plants -However, bacterium does not infect cereals such as corn, rice and wheat

57 Agricultural Applications

58 Agricultural Applications

59 Agricultural Applications Gene guns -Uses bombardment with tiny gold particles coated with DNA -Possible for any species -However, the copy number of inserted genes cannot be controlled

60 Agricultural Applications Herbicide resistance -Broadleaf plants have been engineered to be resistant to the herbicide glyphosate -This allows for no-till planting

61 Agricultural Applications Pest resistance -Insecticidal proteins have been transferred into crop plants to make them pest-resistant -Bt toxin from Bacillus thuringiensis Golden rice -Rice that has been genetically modified to produce  -carotene (provitamin A) -Converted in the body to vitamin A

62 Agricultural Applications

63 Agricultural Applications Adoption of genetically modified (GM) crops has been resisted in some areas because of questions about: -Crop safety for human consumption -Movement of genes into wild relatives -Loss of biodiversity

64 Agricultural Applications Biopharming -Transgenic plants are used to produce pharmaceuticals -Human serum albumin -Recombinant subunit vaccines -Against Norwalk and rabies viruses -Recombinant monoclonal antibodies -Against tooth decay-causing bacteria

65 Agricultural Applications Transgenic animal technology has not been as successful as that in plants -One interesting example is the EnviroPig -Engineered to carry the gene for the enzyme phytase -Breaks down phosphorus in feed -Reduces excretion of harmful phosphates in the environment

66 Agricultural Applications