ハイパーノバとブラックホール Hypernovae and Black Holes 野本憲一 (Nomoto, Ken’ichi) 前田啓一 (Maeda, Keiichi) 東京大学大学院理学系研究科天文学専攻 University of Tokyo, School of Science, Department.

Slides:



Advertisements
Similar presentations
The Physics of Supernovae
Advertisements

SN 1987A spectacular physics Bruno Leibundgut ESO.
Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
Stephen C.-Y. Ng McGill University. Outline Why study supernova? What is a supernova? Why does it explode? The aftermaths --- Supernova remnants Will.
Compact remnant mass function: dependence on the explosion mechanism and metallicity Reporter: Chen Wang 06/03/2014 Fryer et al. 2012, ApJ, 749, 91.
Neutron Stars and Black Holes Please press “1” to test your transmitter.
Gamma-Ray bursts from binary neutron star mergers Roland Oechslin MPA Garching, SFB/TR 7 SFB/TR7 Albert Einstein‘s Century, Paris,
Supernovae Supernova Remnants Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear.
Mass transfer in a binary system
The evolution and collapse of BH forming stars Chris Fryer (LANL/UA)  Formation scenarios – If we form them, they will form BHs.  Stellar evolution:
Neutron Stars and Black Holes
From Progenitor to Afterlife Roger Chevalier SN 1987AHST/SINS.
Raffaella Margutti Harvard – Institute for Theory and Computation On behalf of the Harvard SN forensic team Kyoto2013 What happens when jets barely break.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
Supernovae from Massive Stars: light curves and spectral evolution Bruno Leibundgut ESO.
Supernovae and GRB Connection Ken’ichi Nomoto (Univ. of Tokyo) MAGNUM (U. Tokyo)
Explosive Deaths of Stars Sections 20-5 to 20-10
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
Supernovae of type Ia: the final fate of low mass stars in close bynary systems Oscar Straniero INAF – Oss. Astr. di Collurania (TE)
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
NASA's Chandra Sees Brightest Supernova Ever N. Smith et al. 2007, astro-ph/ v2.
A Radio Perspective on the GRB-SN Connection Alicia Soderberg May 25, 2005 – Zwicky Conference.
March 11-13, 2002 Astro-E2 SWG 1 John P. Hughes Rutgers University Some Possible Astro-E2 Studies of Supernova Remnants.
ASTR100 (Spring 2008) Introduction to Astronomy Galaxy Evolution & AGN Prof. D.C. Richardson Sections
The general theory of relativity is our most accurate description of gravitation Published by Einstein in 1915, this is a theory of gravity A massive object.
Gamma Ray Bursts and LIGO Emelie Harstad University of Oregon HEP Group Meeting Aug 6, 2007.
Collapse of Massive Stars A.MacFadyen Caltech. Muller (1999) “Delayed” SN Explosion acac Accretion vs. Neutrino heating Burrows (2001)
Supernovae Oscar Straniero INAF – Oss. Astr. di Collurania (TE)
Type Ia Supernovae: standard candles? Roger Chevalier.
Felipe Garrido Goicovic Supervisor: Jorge Cuadra PhD thesis project January 2014.
Death of Stars I Physics 113 Goderya Chapter(s): 13 Learning Outcomes:
Black holes: do they exist?
「 Subaru UM 」 @ NAOJ, 30 Jan 2008 Supernovae are NOT spherical: The result from late-time spectroscopy by FOCAS “Asphericity in Supernova Explosions from.
Supernovae and Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear reactions involving.
QSO -  QSO -  GRB ANALOGY HAVE THE SAME 3 BASIC INGREEDIENTS (M. & Luis Rodriguez, S&T 2002) AN UNIVERSAL MAGNETO-HYDRODINAMIC MECHANISM FOR JETS ?
Accretion Disks By: Jennifer Delgado Version:1.0 StartHTML: EndHTML: StartFragment: EndFragment: StartSelection:
Black Hole Chaos The Environments of the most super- massive black holes in the Universe Belinda Wilkes, Chandra X-ray Center, CfA Francesca Civano, CfA.
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
Collapsar Accretion and the Gamma-Ray Burst X-Ray Light Curve Chris Lindner Milos Milosavljevic, Sean M. Couch, Pawan Kumar.
Dec. 6, Review: >8Msun stars become Type II SNe As nuclear burning proceeds to, finally, burning Silicon (Si) into iron (Fe), catastrophe looms.
Review for Quiz 2. Outline of Part 2 Properties of Stars  Distances, luminosities, spectral types, temperatures, sizes  Binary stars, methods of estimating.
Precise Cosmology from SNe Ia Wang Xiao-feng Physics Department and Tsinghua Center for Astrophysics, Tsinghua University 2005, 9, 22, Sino-French Dark.
Zorro and the nature of SNe Ia Paolo A. Mazzali Max-Planck Institut für Astrophysik, Garching Astronomy Department and RESearch Centre for the Early Universe,
Different Kinds of “Novae” I. Super Novae Type Ia: No hydrogen, CO WD deflagration --> detonation Type Ia: No hydrogen, CO WD deflagration --> detonation.
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
Abel, Bryan, and Norman, (2002), Science, 295, 5552 density molecular cloud analog (200 K) shock 600 pc.
Ay 123 Lecture 11 - Supernovae & Neutron Stars Timescales for HS Burning faster and faster..
Observational Properties and Modelling of Hypernovae Jinsong Deng National Astronomical Observatories of China Collaborators: P. A. Mazzali (Trieste Obs.
Death of Stars II Physics 113 Goderya Chapter(s): 14
1 Chang-Hwan Spin of Stellar Mass Black Holes: Hypernova and BH Spin Correlation in Soft X-ray BH Binaries.
Hypernovae and Black Holes 이창환 ( 서울대학교 ) End of Life? or Beginning of New Life?
Progenitor stars of supernovae Poonam Chandra Royal Military College of Canada.
Antimatter in our Galaxy unveiled by INTEGRAL
Magneto-hydrodynamic Simulations of Collapsars Shin-ichiro Fujimoto (Kumamoto National College of Technology), Collaborators: Kei Kotake(NAOJ), Sho-ichi.
Study of the type IIP supernova 2008gz Roy et al. 2011, MNRAS accepted.
Chapter 21 Galaxy Evolution Looking Back Through Time Our goals for learning How do we observe the life histories of galaxies? How did galaxies.
The monitoring of supernovae with the 6-meter telescope of SAO RAS
Mariko KATO (Keio Univ., Japan) collaboration with
Supernova Panel Discussion
Supernovae and Gamma-Ray Bursts
Neutron Stars and Black Holes
N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo),
GRB-Supernova observations: State of the art
Supernova Nucleosynthesis and Extremely Metal-Poor Stars
Nucleosynthesis in jets from Collapsars
Pop III Black-hole-forming supernovae and Abundance pattern of Extremely Metal Poor Stars Hideyuki Umeda (梅田秀之) Dept. of Astronomy Univ.of Tokyo.
Galaxies With Active Nuclei
Pair Instability Supernovae
爆燃Ia型超新星爆発時に おけるダスト形成
Nucleosynthesis in Pop III, Massive and Low-Mass Stars
Presentation transcript:

ハイパーノバとブラックホール Hypernovae and Black Holes 野本憲一 (Nomoto, Ken’ichi) 前田啓一 (Maeda, Keiichi) 東京大学大学院理学系研究科天文学専攻 University of Tokyo, School of Science, Department of Astronomy

SN 1998bw = SN 1987A E ~ 30×10 51 ergsE ~ 1×10 51 ergs

SNe IcSNe IIn SNGRBSNGRB 1998bw cy ef E as1988Z 2002ap1999eb dq 1998ey 1992ar Hypernova Candidates E kinetic > (5-10)×10 51 ergs SN 1998bw GRB

Observations: Spectra, Light Curves –Progenitors, Energetic, M( 56 Ni) The properties of Hypernova Explosions –Features unexpected by spherical models –Black Hole Formation Jet-Driven Explosion Model –Explains the above features? –Predictions Evolution of the central black hole. Nucleosynthetic features (e.g., 56 Ni) Gravitational wave (?) - Optical Display - Abundances

Possible Gravitational Wave from Hypernovae? M BH ~4M  Low Viscosity Case M (R<300km) – M High Viscosity Case –2.21 M –j~10 17 cm 2 s -1 Self-Gravity Large E ROT /|E GRAV | Macfadyen et al. 1998

Bar Mode Instability? R ~100km at Bounce M~1M  J Conserve j~10 16 cm 2 s -1 R ~100km M DISK ~2M  J Conserve j~10 17 cm 2 s -1 h~4× (1Mpc/D) (j/10 17 cm 2 s -1 ) (M/M  ) (f/1000Hz) f~1000 (j/10 17 cm 2 s -1 ) (100km/R) 2 e.g., Fryer et al.2002 SN at 10Mpc (1SN/year); f~100 Hz, h~4× HN at 100Mpc (1HN/year); f~1000 Hz, h~8×10 -22

Ia Ic Ib 94I 97ef 98bw He CaO SiII Hyper -novae Spectra of Supernovae & Hypernovae Hypernovae : broad features blended lines “Large mass at high velocities” Ic: no H, no strong He, no strong Si

Light Curves of Supernovae & Hypernovae Light Curve Broadness SN1998bw >> SN1994I Ejected Mass SN1998bw >> SN1994I Progenitor’s Mass SN1998bw >> SN1994I

Parameters [M ej, E, M( 56 Ni)] Si C+O He H-rich M C+O Fe Collapse 56 Ni 56 Co 56 Fe M ms /M  M C+O /M  ~ ~ ~ Light CurveSpectra  ~ [ dyn  diffusion ] 1/2 ~ R VR c  M ej 1/2   ½ M ej ¾ E -¼ E  M ej 3 E  M ej CO Star Models for SNeIc 56 Ni

Spectral Fitting: SN1997ef Model Normal SN Small M ej Too Narrow Features

Spectral Fitting: SN1997ef Model Hypernova Large M ej Broad Features

Progenitors’ Mass – E – M( 56 Ni)

Most Stars (>25M  ) explode as Hypernovae? The Contribution of Hypernovae is Large. –Hypernovae are Not so Rare Events.

Distribution of HNe Distance – Absolute Magnitude of SNe Ib/c Mpc 1 HN per 1 year in R<100Mpc. 1 SN per 1 year in R<10Mpc.

Hypernova Rate Large Fraction of Massive O (or He) Star with M>20M  Explodes as Hypernovae. Depending on Binary Evolution? Local SN Rate (SN/100yr/10 10 L  ) h=H 0 /100 IaIb/cIIAll 0.36±.11h ±.07h ±.34h ±.36h 2 Corrected 1) Observed 2) )Cappellaro et al. 99, 2)Richardson et al. 01 HNIb/c SNIb/c = 3(+1+2)/18 ~ 0.15 – 0.3 N(20M-50M) N(8M-20M) ~ 0.3 (Salpeter IMF)

Properties of Hypernova Explosions (1) Deviation from spherical explosion models (2) Black hole formation

1) Asphericity in Core-collapse SNe (in general) HST Image of SN1987A Wang et al Optical Spectropolarimetry of SNe 1993J, 1996cb, Wang et al SN1987A: Asymmetrical, but not spherical, ejecta Optical Polarization in core-collapse SNe > 0.5 % (in SNe Ia < %)

1998bw 1997ef 2002ap 1998bw 1997ef 2002ap High Density Spherical Hydro Model Low Density (Vacuum) 2) Light Curves of Hypernovae Maeda et al. 2003, ApJ, submitted

Observer Expansion Fe O Spherical FeII] 5200A [OI] 6300A Observation FWHM 3) Late time spectra of SN1998bw Line Width Inversion between Fe and O Broader Fe lines than O lines in the observations. Low velocity O-rich Matter: SNe1998bw, 1997ef

56 Fe 16 O Spherical Aspherical 15 deg FeII] 5200A [OI] 6300A Maeda et al Observation Interpretation as an Aspherical explosion

Enhancement of O,Mg,Si,S,Ti by a factor of Israelian et al SN matter BH [X/H]=log 10 (X/H)-log 10 (X/H)  4) BH Formation

Hypernova model for the formation of the BH in Nova Sco BH mass in the model 4.8M at the explosion 5.4M now (Post SN) SN BH M MS =40M, M He =16M, E 51 =30 M BH at the explosion ~ 5M Black hole formation with a Hypernova explosion. Podsiadlowski et al. 2002

The properties of hypernova explosions High velocity material (Fe) Low velocity & high density material (O) –Contrary to conventional spherical models. forms a black hole, but explodes with large E 51 (= E/10 51 ergs > 10). –Black hole formation does not always leads to a failed supernova. Do jet-induced explosions satisfy these conditions?

16M  He (M MS =40), 8M  He (M MS =25), (Nomoto&Hashimoto 1988) M Rem0 1.0 – 3.0M  E jet =  Mc 2, 0.01 Model: Jet-induced Explosion Newtonian Gravity Radiation + Pairs 15 o Postprocessing 222 isotopes (Tielemann et al.) K. Maeda, in preparation

Hydrodynamics Collimated jets (Z) + Bow shock (All direction) M Lateral expansion Radial Velocity/cLog (Density[g cm -3 ]) R/10 10 cm

Hydrodynamics (Center) Accretion from the side Continue to accrete, M BH Radial VelocityDensity R/10 10 cm

0.7 s 1.5 s E 51 =11, M BH (final)=5.9M, M( 56 Ni)=0.11M Outflow Inflow R/10 10 cm

Density Distribution Jet (z) (E 51 =11) Jet (R) Sph (E 51 =10) Sph (E 51 =1) High density core at the central region High velocity material along z

Growth of a central remnant Time (sec) M BH Inefficient Jet efficient Jet M REM can be ~ 5 – 10M , starting from 1.5 – 3M . Still a strong explosion follows (E 51 >10). A hypernova with a stellar mass black hole (X-ray Novasco; Large Si,S with black hole formation).

Final Remnants’ masses and Kinetic Energies A more massive star makes a more energetic explosion (As seen in ‘Hypernova Branch’) E 51 =E/10 51 ergs M BH (M  )

Peak Temperature & Density High T + Low  Material are preferentially ejected. R Z R Z Ejected Accreted T/10 9 K Log(Density[g cm -3 ]) 864 Spherical EjectedAccreted

High Velocity Fe Low Velocity O Vz (/10 9 cm s -1 ) E 51 (=E/10 51 ergs)=10, M REM =6M , M( 56 Ni)=0.1M  16 O 56 Ni( 56 Fe) Fe, O Distribution Vr

Relation in M REM and M( 56 Ni) (M  ) L Optical Efficient e.g., rotation inefficient 40M  20M  GW:

Fe Mn O Zn Velocity Inversion of isotopes V(Fe) > V(O), V(Zn) > V(Mn) Spherical; Zn Fe Mn O T, Inner (smaller V) Ejection of heavier isotopes with higher V Prediction

Jet (Z)Jet (R) Spherical Jet (all direction) OFe and heavier

Spherical, ergs, 0.1M Ni Jet-Driven , ergs, 0.1M Ni O, Mg Mn Co , Zn Abundances in the whole ejecta

Possible Contribution to the early Galactic Chemical Evolution Jet model: [Zn/Fe],[Mn/Fe] Agrees with the abundances in old stars. Past [X/Y] = log(X/Y) – log(X/Y)  More Massive Star

[S/Si] [Si/O] 40M  25M  M BH /M  Ni S Si O Accretion Sph Jet Accretion [S/Si],[Si/O]

M BH /M  M  25M  [Mg/O] [C/O] O,Mg C Accretion Sph Jet Accretion [Mg/O],[C/O]

Summary The studies on hypernovae indicate; –Velocity inversion of Fe and O –Dense core –Black hole formation Jet-induced explosions satisfy the above condition! –Blow up heavy isotopes (e.g., Fe, Zn) to the surface. –A black hole grows, with an energetic explosion. Possible site of gravitational wave emission? Depending on angular momentum, HNe may be able to be detected more easily than normal SNe. –M BH efficiency of the jets (e.g., rotation?) –M BH ( inefficient Jets) L Opt –M BH Abundances (e.g., M BH [S/Si], [O/C] )