Isobarentrennung bei Teilchenenergien unterhalb 1 MeV/amu mit einem  TOF Detektor Peter Steier, Robin Golser, Walter Kutschera, Alfred Priller, Christof.

Slides:



Advertisements
Similar presentations
Progress on the 40 Ca(α,  ) 44 Ti reaction using DRAGON Chris Ouellet Supervisor: Alan Chen Experiment leader: Christof Vockenhuber ● Background on the.
Advertisements

Ion Beam Analysis techniques:
W. Scandale for the UA9 Collaboration CERN – IHEP - Imperial College – INFN – JINR – LAL - PNPI – SLAC SPSC, October 25, 2011.
PIGE experience in IPPE Institute of Physics and Power Engineering, Obninsk, Russia A.F. Gurbich.
Spectrum Identification & Artifacts Peak Identification.
ERDA, for measurement of hydrogen in PV applications
Mass Analyzer of SuperHeavy Atoms Some recent results 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Detecting Giant Monopole Resonances Peter Nguyen Advisors: Dr. Youngblood, Dr. Lui Texas A&M University Energy Loss Identifying The Particles Discovered.
Simulation of a Ring Imaging Cerenkov detector to identify relativistic heavy ions. Manuel Fernández-Ordóñez Universidad de Santiago Compostela.
Short ( and incomplete) characteristics of CVD diamond detectors Diamond as a detector material low dielectric constant low capacity low noise good heat.
Study of the fragmentation of Carbon ions for medical applications Protons (hadrons in general) especially suitable for deep-sited tumors (brain, neck.
Detecting Giant Monopole Resonances Peter Nguyen Advisors: Dr. Youngblood, Dr. Lui Texas A&M University.
The York Bragg Detector – Design and Simulation James Butterworth Seminar at York 31/03/2010.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
Hybrid emulsion detector for the neutrino factory Giovanni De Lellis University of Naples“Federico II” Recall the physics case The detector technology.
Electron detectors and spectrometers 1) Gas detectors 2) Channeltrons 3) Semiconductor detectors 4) Electrostatic spectrometers 5) Magnetic spectrometers.
V. V. Parkhomchuk, S.A. Rastigeev BINP, Novosibirsk, Russia. ION SELECTION IN ACCELERATOR MASS SPECTROMETER BINP SB RAS.
ECE/ChE 4752: Microelectronics Processing Laboratory
Workshop on Physics on Nuclei at Extremes, Tokyo Institute of Technology, Institute for Nuclear Research and Nuclear Energy Bulgarian Academy.
Measurement of 4 He( 12 C, 16 O)  reaction in Inverse Kinematics Kunihiro FUJITA K. Sagara, T. Teranishi, M. Iwasaki, D. Kodama, S. Liu, S. Matsuda, T.
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP.
Cross section measurements at LNL M.Mezzetto (INFN-Pd) on behalf of INFN-LNL: M. Cinausero, G. De Angelis,G. Prete.
Ruđer Bošković Institute, Zagreb, Croatia CRP: Development of a Reference Database for Ion Beam Analysis Measurements of differential cross sections for.
New methods to measure the cross sections of 12 C+ 12 C fusion reaction Xiao Fang Department of Physics University of Notre Dame.
Space Instrumentation. Definition How do we measure these particles? h p+p+ e-e- Device Signal Source.
Mitglied der Helmholtz-Gemeinschaft Petersburg Nuclear Physics Institute, Russia Storage cells for internal experiments with Atomic Beam Source at the.
Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada.
Precision Drift Chambers for the ATLAS Muon Spectrometer Susanne Mohrdieck Max-Planck-Institut f. Physik, Munich for the ATLAS Muon Collaboration Abstracts:
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
CJ Barton Department of Physics INTAG Meeting – GSI – May 2007 Large Acceptance Bragg Detector at ISOLDE.
FRANK LABORTORY OF NEUTRON PHYSICS ION BEAM ANALYSIS
Ion Beam Analysis of Gold Flecks in a Foam Lattice F E Gauntlett, A S Clough Physics Department, University of Surrey, Guildford, GU2 7XH, UK.
GEM: A new concept for electron amplification in gas detectors Contents 1.Introduction 2.Two-step amplification: MWPC combined with GEM 3.Measurement of.
Munich-Centre for Advanced Photonics A pixel detector system for laser-accelerated ion detection Sabine Reinhardt Fakultät für Physik, Ludwig-Maximilians-Universität.
Breakup effects of weakly bound nuclei on the fusion reactions C.J. Lin, H.Q. Zhang, F. Yang, Z.H. Liu, X.K. Wu, P. Zhou, C.L. Zhang, G.L. Zhang, G.P.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Mass spectrometry (Test) Mass spectrometry (MS) is an analytical technique that measures masses of particles and for determining the elemental composition.
Ion Beam Analysis Today and Tomorrow Ferenc Pászti Research Institute for Particle and Nuclear Physics, Budapest 20+5 min.
2. RUTHERFORD BACKSCATTERING SPECTROMETRY Basic Principles.
Francis H. Burr Proton Therapy Center Massachusetts General Hospital December 2005 CRONUS Annual Meeting Irradiations at LANSCE May 2 – Flight.
COSIRES 2004 © Matej Mayer Bayesian Reconstruction of Surface Roughness and Depth Profiles M. Mayer 1, R. Fischer 1, S. Lindig 1, U. von Toussaint 1, R.
H, He, Li and Be Isotopes in the PAMELA-Experiment Wolfgang Menn University of Siegen On behalf of the PAMELA collaboration International Conference on.
Basics of Ion Beam Analysis
Why Accelerator Mass spectrometry (AMS) The determination of the concentration of a given radionuclide in a sample can be done in 2 ways: a) measure the.
Precision Drift Chambers for the ATLAS Muon Spectrometer
ERNA: Measurement and R-Matrix analysis of 12 C(  ) 16 O Daniel Schürmann University of Notre Dame Workshop on R-Matrix and Nuclear Reactions in Stellar.
The INFN Italy EXOTIC group Milano, Napoli, Padova, NIPNE Romania, Crakow Poland. Presented by C.Signorini Dept. of Physics and Astronomy Padova (Italy):
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
Rutherford Backscattering Spectrometry (RBS)
Test of PRISMA in Gas Filled Mode B.Guiot for PRISMA collaboration INFN – Laboratori Nazionali di Legnaro.
REQUIREMENTS for Zero-Degree Ion Selection in TRANSFER Wilton Catford University of Surrey, UK & SHARC collabs.
Momentum distributions of projectile residues: a new tool to investigate fundamental properties of nuclear matter M.V. Ricciardi, L. Audouin, J. Benlliure,
Development of RPC based PET B. Pavlov University of Sofia.
Spectra distortion by the interstrip gap in spectrometric silicon strip detectors Vladimir Eremin and.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
ESS | Non-Invasive Beam Profile Measurements| | C. Böhme Non-Invasive Beam Profile Measurement Overview of evaluated methods.
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Fusion excitation measurement for 20 O + 12 C at E/A = 1-2 MeV Indiana University M.J. Rudolph, Z.Q. Gosser, K. Brown ✼, D. Mercier, S. Hudan, R.T. de.
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. The 24 Mg case Marina Barbui.
Young Researchers Session in IFIN-HH 2016
S. A. Rastigeev , A. R Frolov, A. D. Goncharov, V. F. Klyuev, E. S
Department of Tandem Accelerators
Labor of Ion Beam Physics, ETHZ
of secondary light ion beams
Irradiations at LANSCE May 2 –
Chapter 8 Ion Implantation
Measuring 14C concentrations with AMS
1. Introduction Secondary Heavy charged particle (fragment) production
Gain measurements of Chromium GEM foils
Presentation transcript:

Isobarentrennung bei Teilchenenergien unterhalb 1 MeV/amu mit einem  TOF Detektor Peter Steier, Robin Golser, Walter Kutschera, Alfred Priller, Christof Vockenhuber, Katharina Vorderwinkler, Anton Wallner Institut für Isotopenforschung und Kernphysik der Universität Wien, Währinger Straße 17, A-1090 Wien, Österreich 55. Jahrestagung der Österreichischen Physikalischen Gesellschaft, Wien, 27. September 2005

Tandem-AMS: Measurement principle

AMS Isotopes AMS isotopes where stable isobar suppression is not needed (no stable isobar or stable isobar does not form negative ions) 14 C 26 Al 129 I 210 Pb 236 U 244 Pu AMS isotopes where stable isobar suppression is needed 10 Be 36 Cl 41 Ca 55 Mn 60 Fe 146 Sm 182 Hf

36 Cl vs. 36 S: stopping power Stopping Power bei E in = 18 MeV

Isobar identification with a particle detector Energy required:  1 MeV/amu Ionization Chamber From: Finkel and Suter Advances in Analytical Geochemistry 1 (1993) 1-114

The  TOF Detector

Residual Energy [MeV] Separation /  of straggling Simulation using a Mathematica™ package from Robert A. Weller, “General purpose computational tools for simulation and analysis of medium-energy backscattering spectra”, AIP Conference Proceedings -- June 10, Volume 475/1, pp — —— — Thickness of silicon nitride layer [µg/cm 2 ] Energy loss in silicon nitride 18 MeV initial energy Measured at VERA Calculated separation of 36 Cl (radionuclide) – 36 S (stable isobar)

Comparison to other methods  E with ionization chamber TOF has a better energy resolution TOF can handle higher background count rates “Post stripping”, i.e. electrostatic or magnetic separation after energy-loss foil Post stripping can suppress the isobar, i.e. reduce background count rate in detector. TOF can use all charge states: higher efficiency possible Gas filled magnet Gas filled magnet suppresses isobars Gas filled magnet can use all charge states Charge state fluctuations and angular scattering deteriorate resolution. Full stripping Extreme energies needed Inverse PIXE, i.e. characteristic X rays of projectile Some tests, low efficiency, not yet fully explored

Why we use  TOF for our measurements Energy resolution of  TOF can be made arbitrarily high by longer flight path. Physical limitations (energy straggling) can be studied without interfering technical limitations (detector noise, etc.).

Advantages of higher energy Beam emittance smaller: E  0.5 Small angle scattering smaller: E  1 Relative energy straggling smaller:  E ~ E 0.5, however: (  E/E) ~ E  0.5

Facilities used for AMS 15 MV Tandem TU and LMU München Germany 3 MV Tandem Universität Wien Austria 0.5 MV Tandem ETH Zürich Switzerland Small  Big

Calculated separation of 36 Cl – 36 S for different terminal voltages Terminal voltage [MV] Separation /  of straggling carbon foil —, gas - - -

36 Cl: angular scatter for different energies

Disadvantages of large tandems More charge state ambiguities Lower yield of the individual charge states Large machines are more complex About half of all AMS facilities are based on 2-3 MV tandems

 TOF at VERA

Separation of 36 Cl and 36 S (28 MeV) after various SiN foil thicknesses

Silicon nitride foils for energy loss To reduce compressive stress: not stochiometric Si 3 N 4, but ~Si 1.0 N 1.1 (density: 3.4 instead of 3.44) Silson Ltd, Northampton, England: 50 to 1000 nm, 5  5 mm amorphous (i.e. no channeling) Döbeli et al., NIM B (2004) : Si 3 N 3.1 H 0.06 D.R. Ciarlo, Biomedical Microdevices 4:1(2002)63-68 More (physical) straggling and scattering than carbon foils. Much more homogenous.

Silicon nitride foils have no energy loss tails

Separation of 36 Cl and 36 S at 28 MeV

 TOF at a big tandem 15 MV Tandem TU and LMU München Germany Separation of 182 Hf from 182 W at 200 MeV

Post stripping with Q3D

Silicon nitride foils (6 µm) with Q3D 176 Hf Yb Hf 22+ Position along focal plane [arb. units] Energy/Charge higher lower 176 Hf counts 1001 counts counts 176 Yb 24+ Hf suppression: MeV

 TOF - isobar separation at ~200 MeV 13 MV tandem accelerator in Munich

 TOF - isobar separation at 200 MeV 13 MV tandem accelerator in Munich Long TOF Low energy Short TOF High energy No tails!

 TOF - isobar separation at 175 MeV 13 MV tandem accelerator in Munich 176 Yb 176 Hf

Conclusions  TOF allows to exploit the energy loss difference for isobars to the physical limit imposed by energy straggling (however on the cost of efficiency losses due to straggling). Foils of sufficient homogeneity exist, produced from silicon nitride. For AMS with 3-MV tandems, suppression of stable isobars is possible for 41 Ca and 36 Cl. At large tandems, long-lived natural radioisotopes can be tackled which were not yet accessible by AMS at all.

Isobar suppression with energy loss foils D.J. Treacy Jr. et al., Nucl. Instr. and Meth. in Phys. Res. B 172(2000) Fig. 2. Overlay of ESA scans for silicon and sulfur ion beams after energy degradation through a 100 µg/cm 2 carbon foil. The dotted lines represent the slit width allowing the silicon beam into the spectrograph. Separation of 32 Si/ 32 S (18 MeV) with carbon foils: ~ MV terminal voltage

Standard methods use different energy loss when ions pass through matter (gas, foils): Active measurement of energy loss (ionization chamber) Energy measurement after passive absorber Physical limitations: Energy straggling: (  E/E ) ~ E  0.5 Small angle scattering: E  1 Technical limitations: Inhomogeneities of foils produce additional energy straggling and low energy tails. Electronic noise, incomplete charge collection, etc. Stable isobar suppression

Achievable energy with charge states with more than 5% yield 10 Be carbon foil —, gas Cl carbon foil —, gas Hf carbon foil —, gas Terminal voltage U [MV] Energy achieved E [MV] E~U 1.3 Using the formula of Sayer et al.,