CHEMISTRY 1000 Topic #3: Colour in Chemistry Summer 2007 Dr. Susan Lait CdS Cr 2 O 3 TiO 2 Mn 3 (PO 4 ) 2 Co 2 O 3 Fe 2 O 3 Co 2 O 3 Cr 2 O 3 Cu 2 O UO.

Slides:



Advertisements
Similar presentations
Chapter 15 Complex Ions.
Advertisements

COMPLEX IONS Compounds in which metal ion is surrounded by a group of anions or neutral molecules.
Metal Complexes -- Chapter 24
Transition Metals and Coordination Chemistry
Chapter 24 Chemistry of Coordination Compounds
Chapter 24 Chemistry of Coordination Compounds
Complex Ions.
Transition Metals Mercury (Hg) is the only transition metal that is not a solid. The transition metals all have valence electrons in a d subshell. Like.
Transition Metals & Coordination Compounds
Transition metal chemistry Coordination compounds – ligands and things Coordinate covalent bonds and ligands Coordinate covalent bonds and ligands Nomenclature.
Transition Metals and Coordination Chemistry
Transition Metal Chemistry and Coordination Compounds
CHAPTER 3: COORDINATION CHEMISTRY CHEM210/Chapter 3/2014/01 A coordination compound, sometimes called a coordination complex, contains a central metal.
Transition Metal Coordination Compounds
Chapter 23: The Transition Elements and Their Coordination Compounds
Chapter 22 Coordination Chemistry
Lecture 304/15/05. Quiz 4/15/04 1) Electrolysis of a solution of CuSO 4 to give copper metal is carried out using a current of 0.75 A. How long should.
Transition Metal Complexes. Transition metal complexes consist of a central Transition metal ion surrounded by a number of ligands. As a result of their.
Advanced Higher Chemistry Unit 1 Transition metal complexes.
Transition Metal Chemistry The Chemistry of the d-block elements.
Chapter 21 Transition Metals and Coordination Chemistry
Transition Metal Chemistry and Coordination Compounds Green/Damji – Chapter 3 Chang - Chapter 22 Copyright © The McGraw-Hill Companies, Inc. Permission.
Crystal Field Theory Focus: energies of the d orbitals Assumptions
Chemistry of Coordination Compounds Brown, LeMay Ch 24 AP Chemistry Monta Vista High School To properly view this presentation on the web, use the navigation.
Chapter 24 Transition Metals and Coordination Compounds 2007, Prentice Hall Chemistry: A Molecular Approach, 1 st Ed. Nivaldo Tro Roy Kennedy Massachusetts.
TRANSITION METALS AND COORDINATION CHEMISTRY
Chapter 20 Transition Metals and Coordination Chemistry.
CHEMISTRY 1000 Topic #3: Colour in Chemistry Fall 2014 Dr. Susan Findlay CdS Cr 2 O 3 TiO 2 Mn 3 (PO 4 ) 2 Co 2 O 3 Fe 2 O 3 Co 2 O 3 Cr 2 O 3 Cu 2 O UO.
Transition metal complexes
Daniel L. Reger Scott R. Goode David W. Ball Chapter 19 Transition Metals, Coordination Chemistry, and Metallurgy.
Chapter 21(a) Transition Metals and Coordination Chemistry.
Chapter 21 Transition Metals and Coordination Chemistry.
Transition Metals Mercury (Hg) is the only transition metal that is not a solid. The transition metals all have valence electrons in a d subshell. Like.
COORDINATION COMPOUNDS
Transition Metal Chemistry and Coordination Compounds
Copyright © Houghton Mifflin Company. All rights reserved. 20a–1 Alfred Werner 1913 Nobel Prize in Chemistry Theory of the structure of coordination compounds.
Coordination Compounds
Transition Metals and Coordination Compounds. Transition Metals The transition metals are the d-block elements. The Inner Transitions metals are the lanthanides.
Transition Metal Chemistry and Coordination Compounds Chapter 20 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 24 Chemistry of Coordination Compounds
Chapter 21 Transition Metals and Coordination Chemistry.
Drill: Determine the Ksp for Mn 2 S 3 when the solubility is 1 x
Transition Metal Chemistry. d orbital splitting in a typical transition metal atom.
Chem. 1B – 11/17 Lecture.
The Chemistry of Coordination Compounds Chapter 20 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chemistry of Coordination Compounds Chemistry of Coordination Compounds.
Chemistry of Coordination Compounds © 2009, Prentice-Hall, Inc. Sections Chemistry of Coordination Compounds Chemistry, The Central Science,
1 Transition Metal Chemistry and Coordination Compounds Chapter 22 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or.
OCR: Energetics, Equilibrium and Elements. Physical Properties  A transition metal is a d block element that has a partially filled d-subshell of electrons.
Transition Metals and Coordination Chemistry. Dr.Monther F.Salem.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Transition Metals...show great similarities within a given period as well as within.
Chemistry of Coordination Compounds
Chemistry of Coordination Compounds
Chem. 1B – 11/15 Lecture.
COMPLEX IONS: PART 1 From left to right, aqueous solutions of: Co(NO3)2 (red); K2Cr2O7 (orange); K2CrO4 (yellow); NiCl2 (green); CuSO4 (blue); KMnO4 (purple).
Werner’s Coordination Chemistry
Metal-Ligand bonding in transition metal complexes
Chapter 21 Transition Metals and Coordination Chemistry...show great similarities within a given period as well as within a given vertical group. Key reason:
AH Chemistry – Unit 1 Transition Metals.
The Chemistry of Coordination Compounds
The Chemistry of Coordination Compounds
Metal-Ligand bonding in transition metal complexes
Coordination Compounds: AP Material
Metal Complexes -- Chapter 24
Colorimeters.
Drill: Determine the Ksp for Mn2S3 when the solubility is 1 x
Chapter 23 Transition Metals and Coordination Chemistry
Transition Metals and Coordination Chemistry
Example 24.1 Writing Electron Configurations for Transition Metals
KNOCKHARDY PUBLISHING
Presentation transcript:

CHEMISTRY 1000 Topic #3: Colour in Chemistry Summer 2007 Dr. Susan Lait CdS Cr 2 O 3 TiO 2 Mn 3 (PO 4 ) 2 Co 2 O 3 Fe 2 O 3 Co 2 O 3 Cr 2 O 3 Cu 2 O UO 2 iron chromium copper Fe 3+ Cu 2+ Ni 2+ Co 2+ Zn 2+

2 Transition Metals Mercury (Hg) is the only transition metal that is not a solid. The transition metals all have valence electrons in a d subshell. Like other metals, transition metals form cations not anions. We shall see that many transitions cations form beautifully coloured compounds (as shown on the previous page).

3 Ligands and Co-ordination Complexes Co-ordination complexes are compounds in which several ligands are co-ordinated to a transition metal cation. A ligand is any substance (neutral or anion) which can act as a Lewis base, donating electrons to the transition metal cation (which acts as a Lewis acid). If the complex has a charge, it is a complex ion. [Cu(OH 2 ) 6 ] 2+ is Cu 2+ with six water (“aqua ligands”) [Zn(CN) 4 ] 2- is Zn 2+ with four cyanide (“cyano ligands”) The ligands around the metal do not all have to be the same!

4 Ligands and Co-ordination Complexes A very important co-ordination complex is found in hemoglobin: This is a cartoon! Heme (the porphyrin in hemoglogin) has chains branching off the porphyrin ring.

5 Ligands and Co-ordination Complexes Classifying Ligands Ligands co-ordinated to a transition metal though one atom are called monodentate ligands. Ligands co-ordinated to a transition metal through two atoms are called bidentate (“two-toothed”) ligands. Polydentate ligands can also be called chelating ligands, or chelates (“claws”). We saw one such ligand in the Chemistry 1000 “Hardness of Water” lab. EDTA was able to “grip” a cation by co-ordinating to it with six different atoms! (For clarity, individual carbon atoms are not shown.)

6 Ligands and Co-ordination Complexes The number of atoms attached to the transition metal is referred to as the co-ordination number. It doesn’t matter whether these atoms come from the same molecule/ion or from several different ones. Go back and assign a co-ordination number to each complex ion on the previous three pages. Co-ordination complexes can be charged or neutral. To make a neutral precipitate, charged co-ordination complexes (complex ions) need one or more counterions to balance the charge. This gives a complex salt. In the CHEM 2000 lab, you will make the bright green complex salt, K 3 [Fe(C 2 O 4 ) 3 ]. 3H 2 O containing Fe 3+. Break this formula into a complex ion, counterion and water of hydration, clearly indicating each ion’s charge. Identify the ligands and their charge.

7 Ligands and Co-ordination Complexes Some co-ordination complexes and complex salts contain extra water molecules which were trapped during crystallization. These complexes are also hydrates. Water of hydration can be removed by heating a complex salt in a dry oven. If 5.00 grams of K 3 [Fe(C 2 O 4 ) 3 ]. 3H 2 O is heated until all of the water has evaporated, what mass of solid will remain? A co-ordination complex must contain a transition metal cation and several ligands. It may also have counterion(s) (to balance charge) and/or extra water molecules. When naming a co- ordination complex or complex salt, look for these components.

8 Naming Complex Salts The first step in naming a complex salt is to identify the complex ion. To name the complex ion: List the ligands using prefixes to indicate the number of each type of ligand. Use alphabetical order if there are multiple ligands. For ligands with simple names (e.g. chloro, hydroxo), use di, tri, tetra, penta, hexa, etc. For ligands with complicated names (e.g. oxalato), use bis, tris, and tetrakis. Name the transition metal. If the complex ion is an anion, use the metal’s Latin name and change the suffix to ‘ate’ List the metal’s oxidation state using Roman numerals. Once you have named the complex ion, name the complex salt like any other ionic compound: cation then anion then hydration. e.g. K 3 [Fe(C 2 O 4 ) 3 ]. 3H 2 O potassium trisoxalatoferrate(III) trihydrate (cation) (complex anion) (hydration)

9 Naming Complex Salts (Names of Ligands) AnionsFormulaName fluoride:F - fluoro chloride:Cl - chloro bromide:Br - bromo iodide:I - iodo cyanide:CN - cyano oxide:O 2- oxo hydroxide:OH - hydroxo carbonatecarbonato oxalateoxalato Neutral MoleculesFormulaName carbon monoxide:COcarbonyl water:OH 2 aqua ammonia:NH 3 ammine ethylenediamine (“en”)NH 2 CH 2 CH 2 NH 2 ethylenediamine

10 Naming Complex Salts (Latin Names) ElementSymbolLatin NameName in Anionic Complex copperCucuprumcuprate goldAuaurumaurate ironFeferrumferrate silverAgargentumargentate When cobalt is in a complex anion, it is cobaltate. Similarly, zinc is zincate and chromium is chromate. The elements below have names that are not directly derived from the english name for the element.

11 Naming Complex Salts Name the following complex salts. Note that complex ions are typically written inside square brackets. [Ni(OH 2 ) 6 ] CO 3 [Cu(NH 3 ) 4 ] SO 4 · H 2 O [CoCl 3 (NH 3 ) 3 ] [Co(NH 3 ) 6 ] [Cr(CN) 6 ]

12 Naming Complex Salts Note that there is a difference between water as a ligand and “water of crystallization”. The bright blue crystals commonly referred to as CuSO 4 ·5H 2 O are really [Cu(OH 2 ) 4 ]SO 4 ·H 2 O. Give the name corresponding to each of these two formulas. CuSO 4 ·5H 2 O = [Cu(OH 2 ) 4 ]SO 4 ·H 2 O = The only way to determine this information is by experiment, but you should recognize that, in many hydrated salts, at least some of the water molecules serve as ligands.

13 Why are Transition Metals Special? We have seen that main group metals are somewhat limited in what oxidation states they can adopt. Many transition metals, on the other hand, can take on a wide variety of different oxidation states. This distribution is not entirely random, as show in the graph below (common oxidation states in dark red): Note that the elements in the middle can exist in a wider variety of oxidation states than those on either end of the d-block.

14 Why are Transition Metals Special? Compared to s and p electrons, d electrons can be added or removed relatively easily. The electron configuration of neutral vanadium is: The first two electrons removed will be those in the 4s orbital. After that, electrons are removed from the 3d orbitals giving three stable oxidation states: vanadium(III) vanadium(IV) vanadium(V)

15 Electronic Structure and Colour One of the more fun consequences of these partially filled d subshells is that the co-ordination complexes of transition metals are often brightly coloured. The flasks below contain aqueous solutions of several nitrate salts. Note that, since all nitrates are water-soluble, these solutions contain aqua complexes of the transition metal cation. Fe 3+ Cu 2+ Ni 2+ Co 2+ Zn 2+

16 Electronic Structure and Colour Why is the Zn 2+ complex the only colourless one? Consider the electron configurations of the five cations: Fe 3+ Co 2+ Ni 2+ Cu 2+ Zn 2+

17 Electronic Structure and Colour Where does the variety in colour come from? Many co-ordination complexes have octahedral geometry. This means that two of the d orbitals on the transition metal point directly at ligands while the other three do not: A simple electrostatic model, called the crystal field theory, assumes that there will be a certain degree of electron-electron repulsion between the electron pair a ligand donates and any electrons already in the metal d orbitals. This repulsion is felt most strongly by electrons in d orbitals pointing at the ligands.

18 Electronic Structure and Colour Thus, the d z2 and d x2-y2 orbitals are pushed to higher energy than the d xy, d xz and d yz orbitals. This separation in energy is referred to as crystal field splitting (Δ o where ‘o’ is for ‘octahedral’).

19 Electronic Structure and Colour In co-ordination complexes with crystal field splitting, there are two ways to distribute d electrons. Which one is favoured depends on the size of Δ o. The high spin distribution maximizes the alignment of spin of the d electrons. It is favoured when Δ o is small (when the metal is bonded to weak field ligands). Why? The low spin distribution puts electrons in the lowest energy orbitals first. It is favoured when Δ o is large (when the metal is bonded to strong field ligands). Why? CN - > en > NH 3 > EDTA 4- > H 2 O > ox 2- > OH - > F - > Cl - > Br - > I - strong fieldweak field

20 Electronic Structure and Colour How does this make for coloured solutions? Recall that photons are emitted when electrons drop from a higher energy orbital to a lower energy orbital. (see Atomic Line Spectra) Similarly, the electrons get to the higher energy orbital by absorbing photons of light. Electrons in the lower energy d orbitals can absorb photons and be excited into the higher energy d orbitals. Since Δ o corresponds to the energy of light in the visible region (and there is more than one way to absorb a photon), some wavelengths of visible light are absorbed. The wavelengths that are not absorbed give the colour of solution. To absorb coloured light, the transition metal needs to have electrons in at least one of the low-energy d orbitals and an empty space in at least one of the high-energy d orbitals. Which of these two requirements does Zn 2+ lack (making it colourless)?

21 Electronic Structure and Colour

22 Electronic Structure and Colour Note that different ligands provide different amounts of crystal field splitting. Fe(OH 2 ) 6 3+ and Fe(C 2 O 4 ) 3 3- are both complexes of Fe 3+ but Fe(OH 2 ) 6 3+ is extremely pale purple (frequently appearing colourless) while Fe(C 2 O 4 ) 3 3- is green. What colour of light is each compound most likely absorbing? Which of these two ligands is splitting the d orbitals of Fe 3+ more? (i.e. which complex has a larger Δ o )

23 Isomers Even a very small change in the structure of a complex ion can change its colour drastically. Draw two different Lewis structures for [CoCl 2 (NH 3 ) 4 ] +. One of these compounds is purple while one is green! The purple one is referred to as cis-[CoCl 2 (NH 3 ) 4 ] + while the green one is trans-[CoCl 2 (NH 3 ) 4 ] + These compounds are referred to as isomers. They have the same molecular formula but one cannot be superimposed on the other, no matter how they are rotated.

24 Isomers Draw two isomers of diamminedichloroplatinum(II), a square planar complex. Draw two isomers of [CoCl 3 (NH 3 ) 3 ], an octahedral complex. The cis isomer is an anti-cancer drug while the trans isomer is toxic!