The Galactic Center some recent highlights Reinhard Genzel MPE & UCB Physics see Genzel, Eisenhauer & Gillessen arXiv:1006.0064 arXiv:1006.0064 (Rev.Mod.Phys.)

Slides:



Advertisements
Similar presentations
7th MATHEMATICAL PHYSICS MEETING: Summer School and Conference on Modern Mathematical Physics September 2012, Belgrade, Serbia Orbital precession.
Advertisements

ASTR-1020 Stellar Astronomy Day 26. Galaxy Classes.
Formation of Globular Clusters in  CDM Cosmology Oleg Gnedin (University of Michigan)
Probing Black Holes with Gravitational Lensing Eric Agol Chandra Fellow, Caltech PhD, UCSB (University of the Chronically Sun-Burned) (ITP 1999)
Hypervelocity Stars Ejected from the Galactic Center STScI Colloquium Oct 3, 2007 Warren R. Brown Smithsonian Astrophysical Observatory Collaborators:
Probing Dormant Massive Black Hole Binaries at Galactic Nuclei Fukun Liu Astronomy Department & KIAA, Peking University, Beijing, China Probing Strong.
LISA will be able to detect compact objects that spiral into a MBH by GW emission from up to a distance of a Gpc. The signal is expected to be weak. To.
The Transient Universe: AY 250 Spring 2007 Sagittarius A* Geoff Bower.
Active Galactic Nuclei Astronomy 315 Professor Lee Carkner Lecture 19.
The Milky Way PHYS390 Astrophysics Professor Lee Carkner Lecture 19.
Spatial Structure Evolution of Open Star Clusters W. P. Chen and J. W. Chen Graduate Institute of Astronomy National Central University IAU-APRM
The Transient Universe: AY 250 Spring 2007 Existing Transient Surveys: High Energy II: X-ray Binaries Geoff Bower.
Fabio Antonini Joshua Faber Alessia Gualandris and David Merritt Rochester Institute of Technology.
The Swansong of Stars Orbiting Massive Black Holes Clovis Hopman Weizmann Institute of Science Israel Advisor: Tal Alexander.
Close encounters between stars and Massive Black Holes Clovis Hopman Weizmann Institute of Science Israel Advisor: Tal Alexander.
Gravitational Wave Sources From Dense Star Clusters Cole Miller University of Maryland.
The Milky Way Center, Shape Globular cluster system
Levels of organization: Stellar Systems Stellar Clusters Galaxies Galaxy Clusters Galaxy Superclusters The Universe Everyone should know where they live:
Felipe Garrido Goicovic Supervisor: Jorge Cuadra PhD thesis project January 2014.
Black Holes Monsters Lurking at the Centers of Galaxies
Christopher | Vlad | David | Nino SUPERMASSIVE BLACK HOLES.
J. Cuadra – Accretion of Stellar Winds in the Galactic Centre – IAU General Assembly – Prague – p. 1 Accretion of Stellar Winds in the Galactic Centre.
Stellar Disruptions of Super Massive Black Holes Ron Caplan March 7, 2003.
The Current Status of Hypervelocity Stars Galactic Center Workshop Shanghai 2009 Oct 21 Warren R. Brown Smithsonian – CfA Collaborators: Margaret Geller,
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Case Western Reserve University May 19, Imaging Black Holes Testing theory of gas accretion:Testing theory of gas accretion: disks, jets Testing.
The structure of the nuclear stellar cluster of the Milky Way and A. Eckart, R. Genzel,D. Merritt, T. Alexander, A. Sternberg, J. Moultaka, T. Ott, C.
Quasars, black holes and galaxy evolution Clive Tadhunter University of Sheffield 3C273.
High Angular Resolution Imaging of the Galactic Center Andrea Ghez University of California Los Angeles Collaborators E. E. Becklin, G. Duchene, S. Hornstein,
Accreting flows at (sub) millimeter wavelengths P. Ivanov P.N. Lebedev Physical Institute.
2004 Mar 25 Sgr A* at 30 Must Sgr A* be a Super-Massive Black Hole? Mark J. Reid Harvard-Smithsonian CfA Andreas Brunthaler MPIfR/JIVE.
Populations of accreting X-ray sources in galaxies
SgrA*: Recent NIR/X-ray Measurements & the First Time- Resolved AO NIR Polarization Measurements 26th Genaral Assembly of the IAU Prague, Czech Republic,
Chandra Observations of Sgr A* Frederick Baganoff Massachusetts Institute of Technology MITMark Bautz George Ricker Penn StateNiel Brandt Gordon Garmire.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Black Holes in Other Galaxies. The giant elliptical galaxy M87 is located 50 million light-years away in the constellation Virgo. By measuring the rotational.
Some Perspectives on the Evolution of our Understanding of Sagittarius A* Mark Morris, UCLA.
The Character of the Short-Term Variability of Sagittarius A* from the Radio to the Near-Infrared Mark Morris, Andrea Ghez, Seth Hornstein, Jessica Lu.
Spiral Triggering of Star Formation Ian Bonnell, Clare Dobbs Tom Robitaille, University of St Andrews Jim Pringle IoA, Cambridge.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Observational Signatures of Planets Around the Black Hole at theMilky Way Center (SgrA*) Proto-Planetary Disk as the Source of the G2 Gas Cloud Hypervelocity.
The Milky Way Galaxy. Sky Maps in Different Bands.
UNIT 1 The Milky Way Galaxy.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 14 The Milky Way Galaxy.
Super Massive Black Holes The Unknown Astrophysics of their initial formation.
Intermediate-mass Black Holes in Star Clusters Holger Baumgardt Astrophysical Computing Laboratory, RIKEN, Tokyo new address:
Frank EisenhauerGalactic Science with ESO Adaptive Optics, ESO Garching, 27 November … a celebration, only ESO … … a selection, not complete … Frank.
Capture of Stars by Supermassive Black Holes J.A. de Freitas Pacheco T. Regimbau C. Filloux Observatoire de la Côte d’Azur.
Cornelia C. Lang University of Iowa collaborators:
Galaxies: Our Galaxy: the Milky Way. . The Structure of the Milky Way Galactic Plane Galactic Center The actual structure of our Milky Way is very hard.
Variability and Flares From Accretion onto Sgr A* Eliot Quataert (UC Berkeley) Collaborators: Josh Goldston, Ramesh Narayan, Feng Yuan, Igor Igumenshchev.
The prospects of probing relativity in the Galactic Center with Adaptive Optics Observations Tobias Fritz, Stefan Gillessen, Hendrik Bartko, Katie Dodds-Eden,
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
24 Apr 2003Astrogravs '031 Astrophysics of Captures Steinn Sigurdsson Dept Astro & Astrop, & CGWP Penn State.
SgrA* and the central cluster in NIR S. Trippe, T. Ott, F. Eisenhauer, T. Paumard, F. Martins, S. Gillessen, R. Genzel, R. Schödel, A. Eckart, T. Alexander,
Vatican 2003 Lecture 30 HWR Black Holes. Vatican 2003 Lecture 30 HWR Black Holes and Galaxy Centers Two most important energy production mechanisms in.
Evolution of massive binary black holes Qingjuan Yu Princeton University July 21, 2002.
Gravitational radiation from Massive Black Hole Binaries Andrew Jaffe PTA “Focus group” — PSU/CGWP 22 July D. Backer, D. Dawe, A. Lommen.
NIR Emission and Flares from Sgr A* R. Schödel, A.Eckart Universität zu Köln R. Genzel MPE, Garching.
© 2017 Pearson Education, Inc.
An Overabundance of X-ray Binaries Near the Galactic Center
evolution, core collapse, binaries, collisions
Journey to the Galactic Center
HUBBLE DEEP FIELD:.
Acceleration of Electrons and Protons by Plasma Waves in Sgr A*
Evolution of massive binary black holes (BBHs)
M. Benacquista Montana State University-Billings
Black Hole Binaries Dynamically Formed in Globular Clusters
Galaxies With Active Nuclei
Galaxies With Active Nuclei
Presentation transcript:

The Galactic Center some recent highlights Reinhard Genzel MPE & UCB Physics see Genzel, Eisenhauer & Gillessen arXiv: arXiv: (Rev.Mod.Phys.)

a complete orbit: S Ghez et al. 2008, Gillessen et al. 2009a,b SgrA* M = 4.30(±0.20) stat (  0.30) sys x10 6 M  R 0 = 8.28 (±0.15) stat (±0.29) sys kpc

Ghez et al. 2008, Gillessen et al a,b

SgrA* Backer & Sramek 1996, Menten et al. 1997, Bower et al. 2003, 2005, Reid & Brunthaler 2004, Shen et al. 2005, Baganoff et al. 2001, 2003, Aharonian et al , Bartko et al. 2007, Doeleman et al. 2008, Falcke, Melia & Algol 2000, Broderick & Loeb 2006, 2007, Fish et al R/R s v pm  2 (2σ), 20 km/s expected Brownian motion: 0.2 km/s Reid & Brunthaler 2004 θ FWHM (1.3mm) = 37 (+5,-3) μarcsec < θ min (lensing) Avery Broderick’s dream of the future

Milosavljevic & Hansen 2003, Mikkola & Merritt 2008, Gualandris & Merritt 2007, 2009, Gillessen et al. 2009a could SgrA* be a binary ? excluded allowed

mass distribution of the nuclear cluster Genzel et al. 1996, Haller et al. 1996, Trippe et al. 2008, Schödel et al. 2009, Freitag et al. 2006, Hopman & Alexander 2007, Beloborodov et al. 2006, Gillessen et al. 2009a,b, Ghez et al. 2008, Bartko et al dynamical detection of stellar mass at 1pc and light allows a range of IMF and central concentrations the exact numbers are important for LISA inspiral event rates and perturbation of S-star orbits

Allen et al. 1990, Forrest et al. 1987, Krabbe et al. 1991, 1995, Gerhard 2001, Levin & Beloborodov 2003, Genzel et al. 2003, Kim et al. 2003, Portegies Zwart et al , Guerkan et al. 2005, Paumard et al. 2006, Martins et al. 2007, Alexander et al. 2007, Yu, Lu & Lin 2007, Lu et al. 2008, Bartko et al. 1009a, Hobbs & Nayakshin 2008, Bonnell & Rice 2008, Kocsis & Tremaine light year The paradox of youth: young stars near the BH ~180 OB stars in the central parsec ! they can account for the entire FIR, UV and EUV luminosity of the Galactic Center and the excitation/ionization of the SgrA West HII region and exhibit ordered motion

Allen et al. 1990, Forrest et al. 1987, Krabbe et al. 1991, 1995, Gerhard 2001, Levin & Beloborodov 2003, Genzel et al. 2003, Kim et al. 2003, Portegies Zwart et al , Guerkan et al. 2005, Paumard et al. 2006, Martins et al. 2007, Alexander et al. 2007, Yu, Lu & Lin 2007, Lu et al. 2008, Bartko et al. 1009a, Hobbs & Nayakshin 2008, Bonnell & Rice 2008, Kocsis & Tremaine 2010 The paradox of youth: young stars near the BH two warped & thick disks or a single, more complex structure ?

structure of star disk(s) Beloborodov et al. 2006, Paumard et al. 2006, Lu et al. 2009, Bartko et al. 2009, 2010, Gillessen et al. 2009a, Kocsis & Tremaine 2010 h z /R~ warp two warped disks or a single, more complex structure ? ~0.34

can a single initially cold accretion disk broaden to its current state by local interactions ? otherwise: two coeval disks: how did they form in the same region and at large angles, intercepting each other ? Nayakshin & Cuadra 2006, Levin et al. 2006, R. Alexander et al. 2007, Cuadra et al. 2008, Loeckmann et al. 2008, Perets et al. 2009, Kocsis & Tremaine 2010 no (Cuadra et al. 2008): scattering by other objects in nuclear cluster is by far not sufficient to broaden initially thin disk to >>10 0 in ~ 6 Myrs, even with a large number of IMBHs yes (Kocsis & Tremaine 2010): when the ‘graininess’ of the background star cluster is taken into account, warping and thickening of an initially thin disk is the inevitable result of resonant relaxation

Top heavy IMF Paumard et al. 2006, Bartko et al. 2010, Buchholz et al. 2009, Nayakshin & Sunyaev 2005 PMF (KLF)= IMF for young population and at high mass end of continuous star formation limits on A-stars in ‘deep’ fields only believable case for significantly top heavy IMF ? (Bastian 2010)

Paczynski 1978, Kolykhalov & Sunyaev 1980, Lin & Pringle 1987, Shlosman & Begelman 1989, Sanders 1998, Collin & Zahn 1999, Goodman 2003, Larson 2006, Nayakshin 2007, Alexander et al. 2008, Bonnell & Rice 2008, Hobbs & Nayakshin 2009, Ulubay-Siddiki et al top heavy IMF as a result of: accretion & merging in Keplerian disk, growth toward Hills/isolation mass >100 M  shock-heating brings Jeans mass to >>10 M  in-situ star formation from infalling gas currently: Q disks ~30-100

Star formation history in central parsec Blum et al. 2003, Maness et al. 2007, Pfuhl et al. 2010, Löckmann et al over ≥1pc and 10 Gyrs: IMF cannot have been as flat as in disk(s)

Bahcall-Wolf: ρ~r -7/4 cusp isothermal core is there a stellar cusp ? ρ * ~R -1.3±02 ~ R -1.5 –(m/(4M)) Genzel et al. 2003,Schödel et al. 2007, Alexander 2005, Merritt 2006 GC is one of the few nuclei where an equilibrium cusp may exist: since t relax ~t Hubble simulations by Freitag et al. (2006): in central 0.1pc (2.5”) 2400 stellar black holes 6500 main-seq. stars + giants 3000 WDs 400 neutron stars

Genzel et al.1996, 2003, Eisenhauer et al. 2005, Schödel et al. 2007, Bartko et al. 2009b, Buchholz et al. 2009, Do et al. 2009, Dale et al. 2009, Merritt 2009, Dale et al. 2009, Davies 2010 is there a stellar cusp ?  the cusp consists mainly of relatively massive young stars; their lifetime is too short to be relaxed by two-body relaxation  the old stars do not exhibit a cusp  collisions? initial conditions ? top heavy IMF ? gouging by IMBH? S-stars B O/WR AGB late red clump depth 1” (0.04 pc) R ~ 1 light month

near-isotropic, random orientation (p=74%) properties of cusp star orbits Gillessen et al. 2009a monitoring the orbits of the innermost 100 stars in the central light year; currently 35 orbits thermal eccentricties ~2σ greater than thermal distribution

evidence for remnants Muno et al evidence for stellar remnant binaries from X-ray (radio) transients

fainter stars very close to SgrA* automatic PSF subtraction of point sources Sabha et al ” NACO, , Ks SgrA* 92 mas/yr (3600 km/s) ‘astrometric confusion’

The Hills capture process Hills 1988, Gould & Quillen 2003, Yu & Tremaine 2003, Gualandris et al. 2005, Alexander 2007 ejection of high velocity star

Massive perturbers Spitzer & Schwarzschild 1951, Perets, Alexander & Hopman light years

resonant relaxation in a Keplerian potential S2 Rauch & Tremaine 1996, Hopman & Alexander 2007, Perets et al. 2009

how did the young stars get into the central pc ? star disk(s)central cusp in situ star formation: tidally disrupted ‘dispersion ring’ of gas + gravitational instability in disk + - external formation: transport by in-spiraling massive cluster (+ IMBH?) - - transport by scattering & relaxation: massive perturbers + Hills capture + resonant relaxation near BH - +? Alexander, Merritt, Gerhard, Hills, Nayakshin, Levin, Bonnell, Tremaine, Morris, Portegies Zwart, Perets

hyper velocity stars Brown et al. 2005, 2006, 2008, 2010, Hills 1989, Yu & Tremaine 2003 expected ejection rate yr -1 : ~10 3 HVs within 100 kpc

Emission from SgrA* Baganoff et al. 2001, Genzel et al. 2003,, Ghez et al. 2004, 2005, Eisenhauer et al. 2005, Gillessen et al. 2006, Eckart et al. 2005, 2006a/b, 2008, Trippe et al. 2007, Meyer et al. 2007, Porquet et al. 2008, Marrone et al. 2008, Do et al. 2008, Yusef-Zadeh et al. 2008, 2010, Dodds-Eden et al. 2009, 2010, Sabha et al L’-band VLT XMM Dodds-Eden et al. 2010: 40 epochs Do et al epochs red power law PSD probability of Flux(mJy) dereddened Flux (mJy) cumulative flux distribution

magnetic reconnection Baganoff et al. 2001, Genzel et al. 2003,, Ghez et al. 2004, 2005, Eisenhauer et al. 2005, Gillessen et al. 2006, Eckart et al. 2005, 2006a/b, 2008, Trippe et al. 2007, Meyer et al. 2007, Porquet et al. 2008, Marrone et al. 2008, Sharma et al. 2007, Do et al. 2008, Dodds-Eden et al. 2010a,b,Yusef-Zadeh et al , Markoff 2010, Melia & Falcke 2001 magnetic reconnection event acceleration of electrons, drop in B-field IR/X-synchrotron radiation adiabatic expansion Dodds-Eden et al. 2010a

The potential of GC measurements for new constraints on GR S-star orbits central cusp flares +submm BH merger gravitational wave pattern 6 R S Earth Orbit R S ~ 10 µas field curvature Psaltis 2004 post-Newt. to β 2 (grav.redshift, transv. Doppler) radial & L-T precess. Q 2 =J 2 /M (no hair) strong field effects: photon orbit…. Eisenhauer et al. 2008, Rubilar & Eckart 2001, Weinberg et al. 2005, Zucker et al. 2006, Will 2008, Merritt et al. 2010