Monday, Mar. 6, 2006PHYS 1444-501, Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #12 Monday, Mar. 6, 2006 Dr. Jaehoon Yu EMF and Terminal.

Slides:



Advertisements
Similar presentations
Chapter 19 DC Circuits.
Advertisements

Chapter 18 Direct Current Circuits. Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that.
Fundamentals of Circuits: Direct Current (DC)
Ch 191 Chapter 19 DC Circuits © 2002, B.J. Lieb Giancoli, PHYSICS,5/E © Electronically reproduced by permission of Pearson Education, Inc., Upper.
Chapter 28 Direct Current Circuits TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAA.
T-Norah Ali Al-moneef King Saud University
DC Circuits Chapter 26 Opener. These MP3 players contain circuits that are dc, at least in part. (The audio signal is ac.) The circuit diagram below shows.
Tuesday, Oct. 25, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #15 Tuesday, Oct. 25, 2011 Dr. Jaehoon Yu Kirchhoff’s Rules.
DC circuits Physics Department, New York City College of Technology.
Direct Current Circuits
Fig 28-CO, p.858. Resistive medium Chapter 28 Direct Current Circuits 28.1 Electromotive “Force” (emf)
Direct Current Circuits
Copyright © 2009 Pearson Education, Inc. Lecture 7 – DC Circuits.
بسم الله الرحمن الرحيم FCI.
Electric current and direct-current circuits A flow of electric charge is called an electric current.
1 Faraday’s Law of Induction If C is a stationary closed curve and S is a surface spanning C then The changing magnetic flux through S induces a non-electrostatic.
Monday, Oct. 10, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #12 Monday, Oct. 10, 2005 Dr. Jaehoon Yu EMF and Terminal.
Thursday, Oct. 13, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #14 Thursday, Oct. 13, 2011 Dr. Jaehoon Yu EMF and Terminal.
Wednesday, Feb. 29, 2012 PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #12 Wednesday, Feb. 29, 2012 Dr. Jaehoon Yu Electric.
Tuesday, June 18, 2013PHYS , Summer 2013 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #9 Tuesday, June 18, 2013 Dr. Jaehoon Yu Chapter 19 -Kirchhoff’s.
Lecture 2 Basic Circuit Laws
Copyright © 2009 Pearson Education, Inc. Chapter 26 DC Circuits.
Week 04, Day 2 W10D2 DC Circuits Today’s Reading Assignment W10D2 DC Circuits & Kirchhoff’s Loop Rules Course Notes: Sections Class 09 1.
Direct Current When the current in a circuit has a constant direction, the current is called direct current Most of the circuits analyzed will be assumed.
Chapter 27 Lecture 12: Circuits.
Lecture 6 Direct Current Circuits Chapter 18 Outline Energy Source in Circuits Resistor Combinations Kirchhoff’s Rules RC Circuits.
Ch 191 Chapter 19 DC Circuits © 2006, B.J. Lieb Some figures electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New.
Monday, July 6, 2009PHYS , Summer 2009 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #8 Monday, July 6, 2009 Dr. Jaehoon Yu Chapter 19 -EMFs.
PHY-2049 Current & Circuits February ‘08. News Quiz Today Examination #2 is on Wednesday of next week (2/4/09) It covers potential, capacitors, resistors.
Electric Circuits AP Physics B.
FCI. Direct Current Circuits: 3-1 EMF 3-2 Resistance in series and parallel. 3-3 Rc circuit 3-4 Electrical instruments FCI.
Chapter 18 Direct Current Circuits. Chapter 18 Objectives Compare emf v potential difference Construct circuit diagrams Open v Closed circuits Potential.
Chapter 26 DC Circuits. Units of Chapter EMF and Terminal Voltage - 1, Resistors in Series and in Parallel - 3, 4, 5, 6, Kirchhoff’s.
Chapter 25 Electric Circuits.
10/9/20151 General Physics (PHY 2140) Lecture 10  Electrodynamics Direct current circuits parallel and series connections Kirchhoff’s rules Chapter 18.
DC Circuits AP Physics Chapter 18. DC Circuits 19.1 EMF and Terminal Voltage.
Monday, June 17, 2013PHYS , Summer 2013 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #8 Monday, June 17, 2013 Dr. Jaehoon Yu Chapter 18 –Superconductivity.
Chapter 28 Direct Current Circuits. Direct Current When the current in a circuit has a constant direction, the current is called direct current Most of.
Chapter 28 Direct Current Circuits. Introduction In this chapter we will look at simple circuits powered by devices that create a constant potential difference.
Monday, Mar. 5, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #13 Monday, Mar. 5, 2012 Dr. Jaehoon Yu Kirchhoff’s Rules.
Lecture 11-1 Electric Current Current = charges in motion Magnitude rate at which net positive charges move across a cross sectional surface Units: [I]
Physics for Scientists and Engineers II, Summer Semester Lecture 9: June 10 th 2009 Physics for Scientists and Engineers II.
Direct Current Circuits A current is maintained in a closed circuit by an emf (electromotive force) Battery. An emf forces electrons to move against the.
TUesday, April 12, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Review #2 Tuesday April 12, 2011 Dr. Andrew Brandt TEST IS THURSDAY 4/14.
Chapter 20 Electric Circuits Electromotive Force and Current Within a battery, a chemical reaction occurs that transfers electrons from one terminal.
19-2 EMF and Terminal Voltage A battery or generator, or other electrical energy creation device, is called the seat or source of electromotive force,
Tuesday October 16, PHYS Dr. Andrew Brandt PHYS 1444 – Section 003 Lecture #13 Tuesday October 16, 2012 Dr. Andrew Brandt Chapter 26 Chapter.
Chapter 27 Lecture 23: Circuits: I. Direct Current When the current in a circuit has a constant direction, the current is called direct current Most of.
Lectures 7 to 10 The Electric Current and the resistance Electric current and Ohm’s law The Electromotive Force and Internal Resistance Electrical energy.
Thursday, Mach 10, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #12 Chapter 26 Thursday Mar 10, 2011 Dr. Andrew Brandt HW6 Ch 26.
Mondady Feb. 10, 2014PHYS , Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #8 Monday February 10, 2014 Dr. Andrew Brandt CH 18 Electric Power.
Wednesday, July 1, 2009PHYS , Summer 2009 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #7 Wednesday, July 1, 2009 Dr. Jaehoon Yu Chapter 19.
Wednesday, Apr. 19, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #21 Wednesday, Apr. 19, 2006 Dr. Jaehoon Yu Energy.
DC Circuits AP Physics Chapter 18. DC Circuits 19.1 EMF and Terminal Voltage.
Wednesday, Mar. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #13 Wednesday, Mar. 8, 2006 Dr. Jaehoon Yu Analysis.
1 TOPIC 7 Electric circuits. 2 Charges will flow to lower potential energy To maintain a current, something must raise the charge to higher potential.
Kirchhoff’s Rules.
PHYS 1441 – Section 001 Lecture #11
PHYS 1442 – Section 001 Lecture #7
PHYS 1444 – Section 003 Lecture #15
PHYS 1442 – Section 001 Lecture #8
PHYS 1444 – Section 003 Lecture #12
PHYS 1444 – Section 002 Lecture #16
PHYS 1444 – Section 002 Lecture #16
PHYS 1444 – Section 002 Lecture #15
PHYS 1444 – Section 501 Lecture #13
PHYS 1444 – Section 002 Lecture #15
PHYS 1444 – Section 004 Lecture #14
PHYS 1444 – Section 501 Lecture #12
PHYS 1442 – Section 004 Lecture #9
Presentation transcript:

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #12 Monday, Mar. 6, 2006 Dr. Jaehoon Yu EMF and Terminal Voltage Resistors in Series and Parallel Energy losses in Resistors Kirchhoff’s Rules RC Circuits

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 2 Announcements Please bring back your exams to me by Wednesday, Mar. 8 Quiz on Monday, Mar. 20 –Covers CH 25, 26 and some of 27 Reading assignments –CH26 – 5 and 26 – 6

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 3 What do we need to have current in an electric circuit? –A device that provides a potential difference, such as battery or generator They normally convert some types of energy into electric energy These devices are called source of electromotive force (emf) –This is does NOT refer to a real “force”. Potential difference between terminals of emf source, when no current flows to an external circuit, is called the emf (  ) of the source. Battery itself has some internal resistance ( r ) due to the flow of charges in the electrolyte –Why does the headlight dim when you start the car? The starter needs a large amount of current but the battery cannot provide charge fast enough to supply current to both the starter and the headlight EMF and Terminal Voltage

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 4 Since the internal resistance is inside the battery, we can never separate them out. EMF and Terminal Voltage So the terminal voltage difference is V ab =V a -V b. When no current is drawn from the battery, the terminal voltage equals the emf which is determined by the chemical reaction; V ab = .. However when the current I flows naturally from the battery, there is an internal drop in voltage which is equal to Ir. Thus the actual delivered terminal voltage is

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 5 Resisters are in series when two or more resisters are connected end to end –These resisters represent simple resisters in circuit or electrical devices, such as light bulbs, heaters, dryers, etc Resisters in Series What is common in a circuit connected in series? –Current is the same through all the elements in series Potential difference across every element in the circuit is –V 1 =IR 1, V 2 =IR 2 and V 3 =IR 3 Since the total potential difference is V, we obtain –V=IR eq =V 1 +V 2 +V 3 =I(R 1 +R 2 +R 3 ) –Thus, R eq =R 1 +R 2 +R 3 Resisters in series When resisters are connected in series, the total resistance increases and the current decreases.

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 6 Why is it true that V=V 1 +V 2 +V 3 ? Energy Losses in Resisters What is the potential energy loss when charge q passes through the resister R 1, R 2 and R 3 – –  U 1 =qV 1,  U 2 =qV 2,  U 3 =qV 3 Since the total energy loss should be the same as the energy provided to the system, we obtain – –  U=qV=  U 1 +  U 2 +  U 3 =q(V 1 +V 2 +V 3 ) –T–Thus, V=V 1 +V 2 +V 3

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 7 Example 26 – 1 Battery with internal resistance. A  resistor is connected to the terminals of a battery whose emf is 12.0V and whose internal resistance is 0.5- . Calculate (a) the current in the circuit, (b) the terminal voltage of the battery, V ab, and (c) the power dissipated in the resistor R and in the battery’s internal resistor. (a) Since We obtain Solve for I (b) The terminal voltage V ab is (c) The power dissipated in R and r are What is this? A battery or a source of emf.

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 8 Resisters are in parallel when two or more resisters are connected in separate branches –Most the house and building wirings are arranged this way. Resisters in Parallel What is common in a circuit connected in parallel? –T–The voltage is the same across all the resisters. –T–The total current that leaves the battery, is however, split. The current that passes through every element is –I–I 1 =V/R 1, I 2 =V/R 2, I 3 =V/R 3 Since the total current is I, we obtain –I–I=V/R eq =I 1 +I 2 +I 3 =V(1/R 1 +1/R 2 +1/R 3 ) –T–Thus, 1/R eq =1/R 1 +1/R 2 +1/R 3 Resisters in parallel When resisters are connected in parallel, the total resistance decreases and the current increases.

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 9 Parallel Capacitor arrangements Resister and Capacitor Arrangements Parallel Resister arrangements Series Capacitor arrangements Series Resister arrangements

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 10 Example 26 – 2 Series or parallel? (a) The light bulbs in the figure are identical and have identical resistance R. Which configuration produces more light? (b) Which way do you think the headlights of a car are wired? (a) What are the equivalent resistances for the two cases? Series The bulbs get brighter when the total power transformed is larger. series ParallelSo parallel So parallel circuit provides brighter lighting. (b) Car’s headlights are in parallel to provide brighter lighting and also to prevent both lights going out at the same time when one burns out. So what is bad about parallel circuits?Uses more energy in a given time.

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 11 Example 26 – 5 Current in one branch. What is the current flowing through the 500-  resister in the figure? What do we need to find first? Thus the total current in the circuit is We need to find the total current. To do that we need to compute the equivalent resistance. R eq of the small parallel branch is: R eq of the circuit is: The voltage drop across the parallel branch is The current flowing across 500-  resister is therefore What is the current flowing 700-  resister?

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 12 Some circuits are very complicated to do the analysis using the simple combinations of resisters –G. R. Kirchhoff devised two rules to deal with complicated circuits. Kirchhoff’s Rules – 1 st Rule Kirchhoff’s rules are based on conservation of charge and energy –Kirchhoff’s 1 st rule: Junction rule, charge conservation. At any junction point, the sum of all currents entering the junction must equal to the sum of all currents leaving the junction. In other words, what goes in must come out. At junction a in the figure, I3 I3 comes into the junction while I1 I1 and I2 I2 leaves: I3 I3 = I 1 + I2I2

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 13 Kirchhoff’s Rules – 2 nd Rule Kirchoff’s 2 nd rule: Loop rule, uses conservation of energy. –The sum of the changes in potential around any closed path of a circuit must be zero. The current in the circuit in the figure is I =12/690=0.017A. –Point e is the high potential point while point d is the lowest potential. –When the test charge starts at e and returns to e, the total potential change is 0. –Between point e and a, no potential change since there is no source of potential nor any resistance. –Between a and b, there is a 400  resistance, causing IR=0.017*400 =6.8V drop. –Between b and c, there is a 290  resistance, causing IR=0.017*290 =5.2V drop. –Since these are voltage drops, we use negative sign for these, -6.8V and -5.2V. –No change between c and d while from d to e there is +12V change. –Thus the total change of the voltage through the loop is: -6.8V-5.2V+12V=0V.

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 14 1.Determine the flow of currents at the junctions. It does not matter which direction you decide. If the value of the current after completing the calculations are negative, you just flip the direction of the current flow. 2.Write down the current equation based on Kirchhoff’s 1 st rule at various junctions. Be sure to see if any of them are the same. 3.Choose closed loops in the circuit 4.Write down the potential in each interval of the junctions, keeping the sign properly. 5.Write down the potential equations for each loop. 6.Solve the equations for unknowns. Using Kirchhoff’s Rules

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 15 Example 26 – 8 Use Kirchhoff’s rules. Calculate the currents I 1, I2 I2 and I3 I3 in each of the branches of the circuit in the figure. The directions of the current through the circuit is not known a priori but since the current tends to move away from the positive terminal of a battery, we arbitrary choose the direction of the currents as shown. This is the same for junction d as well, so no additional information. We have three unknowns so we need three equations. Using Kirchhoff’s junction rule at point a, we obtain Now the second rule on the loop ahdcba. The total voltage change in loop ahdcba is.

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 16 Example 26 – 8, cnt’d So the three equations become Now the second rule on the other loop agfedcba. The total voltage change in loop agfedcba is. We can obtain the three current by solving these equations for I 1, I2 I2 and I3.I3.

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 17 When two or more sources of emfs, such as batteries, are connected in series –The total voltage is the algebraic sum of their voltages, if their direction is the same V ab = =3.0V in figure (a). –If the batteries are arranged in an opposite direction, the total voltage is the difference between them EMFs in Series and Parallel: Charging a Battery V ac =20 – 12=8.0V in figure (b) Connecting batteries in opposite direction is wasteful. This, however, is the way a battery charger works. Since the 20V battery is at a higher voltage, it forces charges into 12V battery Some battery are rechargeable since their chemical reactions are reversible but most the batteries do not reverse their chemical reactions Parallel arrangements (c) are used only to increase currents.

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 18 Circuits containing both resisters and capacitors –RC circuits are used commonly in everyday life Control windshield wiper Timing of traffic light from red to green Camera flashes and heart pacemakers How does an RC circuit look? –There should be a source of emf, capacitors and resisters What happens when the switch S is closed? –Current immediately starts flowing through the circuit. –Electrons flows out of negative terminal of the emf source, through the resister R and accumulates on the upper plate of the capacitor –The electrons from the bottom plate of the capacitor will flow into the positive terminal of the battery, leaving only positive charge on the bottom plate –As the charge accumulates on the capacitor, the potential difference across it increases –The current reduces gradually to 0 till the voltage across the capacitor is the same as emf. –The charge on the capacitor increases till it reaches to its maximum C . RC Circuits

Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 19 How does all this look like in graphs? –Charge and the current on the capacitor as a function of time –From energy conservation (Kirchhoff’s 2 nd rule), the emf  must be equal to the voltage drop across the capacitor and the resister =IR+Q/C R includes all resistance in the circuit, including the internal resistance of the battery, I is the current in the circuit at any instant, and Q is the charge of the capacitor at that same instance. RC Circuits