High Density Jet Polarized Target Molecular Polarization Workshop Ferrara,Italy 16-18 June.

Slides:



Advertisements
Similar presentations
The Impact of Dissociator Cooling on the Beam Intensity and Velocity Spread in the SpinLab ABS M. Stancari, L. Barion, C. Bonomo, M. Capiluppi, M. Contalbrigo,
Advertisements

Spin Filtering Studies at COSY and AD Alexander Nass for the collaboration University of Erlangen-Nürnberg SPIN 2008, Charlottesville,VA,USA, October 8,
Studies on Beam Formation in an Atomic Beam Source
Patricia Aguar Bartolomé Institut für Kernphysik, Universität Mainz PSTP 2013 Workshop, Charlottesville 11th September 2013.
2001/9/20Laser Driven Target 1 Laser Driven Target at MIT Chris Crawford, Ben Clasie, Jason Seely, Dipangkar Dutta, Haiyan Gao Introduction.
Halo calculations in ATF DR Dou Wang (IHEP), Philip Bambade (LAL), Kaoru Yokoya (KEK), Theo Demma (LAL), Jie Gao (IHEP) FJPPL-FKPPL Workshop on ATF2 Accelerator.
Quadrupole Magnetic Design for an Electron Ion Collider Paul Brindza May 19, 2008.
PSTP2007 Brookhaven National Laboratory, USA Michelle Stancari Università degli Studi di Ferrara (Italy) and INFN Studies of Atomic Beam Formation Michelle.
MARS flux simulations - update Sergei Striganov Fermilab June 3, 2009.
N. Doshita, Yamagata Univ.1 The COMPASS polarized target for Drell-Yan physics Drell-Yan physics Informal International Workshop on Drell-Yan physics.
Mitglied der Helmholtz-Gemeinschaft DSMC simulations of polarized atomic beam sources including magnetic fields September 13, 2013 | Martin Gaisser, Alexander.
General Formulation - A Turbojet Engine
BIAS MAGNETRON SPUTTERING FOR NIOBIUM THIN FILMS
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Deuterium/Hydrogen Molecules Possible Fuel for Nuclear Fusion Reactors? by Ralf Engels.
Modelling of the Effects of Return Current in Flares Michal Varady 1,2 1 Astronomical Institute of the Academy of Sciences of the Czech Republic 2 J.E.
Buffer Gas Cooling of atomic and molecular beams Wenhan Zhu Princeton University 11/06/2007.
1 Optical Diagnostic Results of MERIT Experiment and Post-Simulation H. Park, H. Kirk, K. McDonald Brookhaven National Laboratory Princeton University.
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
HD target.
HD target. HD target overview Characteristics of polarized HD target Polarization Method HD target is polarized by the static method using “brute force”
Overview I3HP 1 I3 Hadron Physics – Joint Research Projects Polarized Nucleon Targets for Europe Speaker: W. Meyer M€ Scientific Case Scientific.
EXAMPLE 27.1: A copper wire carries a current of 10 A. It has a cross- sectional area of 0.05 cm 2. Estimate the drift velocity of the electrons.
1 Numerical study of the thermal behavior of an Nb 3 Sn high field magnet in He II Slawomir PIETROWICZ, Bertrand BAUDOUY CEA Saclay Irfu, SACM Gif-sur-Yvette.
Atmosphere Chapter 11.2 & 11.3.
E. Steffens - PSTP 2007 (BNL)Summary ABS for Targets and Ion Sources1 Summary on „ABS‘s for Targets & Ion Sources“ Discussion Session Tuesday, ,
Zian Zhu Magnet parameters Coil/Cryostat/Support design Magnetic field analysis Cryogenics Iron yoke structure Mechanical Integration Superconducting Magnet.
Current and Resistance
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Beam Species Measurements on the MAST NBI system Brendan Crowley Thanks to.
Separate production cell. Geometry and dimensions If the filling time is much shorter then the accumulation time then maximum of UCN density in the measurement.
Possibility to increase intensity of polarized hydrogen target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia Spin Physics Workshop.
Superconducting Quadrupoles inside the HERA Experiments M. Bieler, DESY, LHC LUMI 05 Workshop, Arcidosso, September The HERA Interaction Region.
Laser-Driven H/D Target at MIT-Bates Ben Clasie Massachusetts Institute of Technology Ben Clasie, Chris Crawford, Dipangkar Dutta, Haiyan Gao, Jason Seely.
Rb flow in AWAKE Gennady PLYUSHCHEV (CERN - EPFL).
MIT-Bates Laser Driven Target Introduction Achieved and expected results Installation plan and timeline B. Clasie, C. Crawford, D. Dutta, H. Gao, J. Seely,
CONSTRUCTION AND TEST OF A TRANSVERSE SUPERCONDUCTING HOLDING MAGNET 15th CB Meeting Mainz March 8th, 2010 Henry G. Ortega Spina.
Perspectives for polarized antiprotons Paolo Lenisa Università di Ferrara and INFN - Italy Perspectives for Polarized Antiprotons MENU 2013 – Rome, September.
1 Possibility to obtain a polarized hydrogen molecular target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia XIV International.
Effect of Re Alloying in W on Surface Morphology Changes After He + Bombardment at High Temperatures R.F. Radel, G.L. Kulcinski, J. F. Santarius, G. A.
16 T Dipole Design Options: Input Parameters and Evaluation Criteria F. Toral - CIEMAT CIEMAT-VC, Sept. 4th, 2015.
The Polarized Internal Target at ANKE: First Results Kirill Grigoryev Institut für Kernphysik, Forschungszentrum Jülich PhD student from Petersburg Nuclear.
A. Nass, M. Chapman, D. Graham, W. Haeberli,
An Hybrid QD0 for SID ? Marco Oriunno (SLAC), Nov. 14, 2013 LCWS13, TOKYO.
Interactions with Rest Gas – Typical Case Interactions with Rest Gas – ELENA Quantitative analysis for ELENA Evaluations at 100 keV Ejection Energy Evaluations.
Estimates of Intra-Beam Scattering in ABS M. Stancari, S. Atutov, L. Barion, M. Capiluppi, M. Contalbrigo, G. Ciullo, P.F. Dalpiaz, F.Giordano, P. Lenisa,
GTK GAS COOLING SYSTEM Marco Statera, Vittore Carassiti, Ferruccio Petrucci, Luca Landi, Stefano Chiozzi, Manuel Bolognesi NA62 - GTK working group meeting.
Super Fragment Separator (Super-FRS) Machine and Magnets H. Leibrock, GSI Darmstadt Review on Cryogenics, February 27th, 2012, GSI Darmstadt.
Mitglied der Helmholtz-Gemeinschaft Summary of the target session of the IEB Workshop June 19, 2015 | Alexander Nass.
E+/e- Backgrounds at BEPCII/BESIII JIN Dapeng Aug. 22, 2011.
Results from the cold test of the first QD0 prototype
Polarized internal gas target at LHC
Example: Magnetic Quadrupole Lens
Quench estimations of the CBM magnet
6th BINP-FAIR-GSI Workshop,
Status of the CLIC DR wiggler design and production at BINP
Hervé Allain, R. van Weelderen (CERN)
M. Migliorati, C. Vaccarezza INFN - LNF
Primary estimation of CEPC beam dilution and beam halo
Hervé Allain, R. van Weelderen (CERN)
Yingshun Zhu Accelerator Center, Magnet Group
Chapter 5 The First Law of Thermodynamics for Opened Systems
BESIII Collaboration Meeting, June 5~6, 2002, Zian Zhu
MQYY: superconducting Quadrupole magnet for Hl-lhc
INFN-Sezione di Pavia, Italy
The superconducting solenoids for the Super Charm-Tau Factory detector
as a prototype for Super c-tau factory
J. García, F. Toral (CIEMAT) P. Fessia (CERN)
CEPC Collider Magnets CHEN, Fusan November 13, 2018.
Quench calculations of the CBM magnet
Target Analysis for Transversity
Chapter 32 Problems 6,7,9,16,29,30,31,37.
Presentation transcript:

High Density Jet Polarized Target Molecular Polarization Workshop Ferrara,Italy June

Marco Capiluppi Giuseppe Ciullo Marco Contalbrigo Paola Dalpiaz Ferretti Paolo Lenisa Michelle Stancari Marco Statera Istituto Nazionale di Fisica Nucleare Ferrara University A HIGH INTENSITY COLD SUPERCONDUCTING JET POLARIZED TARGET

How to increase the intensity of an ABS?  increase the acceptance  increase the input flow rate Consequences  Increased beam attenuation  lower magnet transmission?  lower dissociation?  pumping problems?

Why superconducting magnets? Calculated for cylindrical sextupoles using characteristics of NbTi wire currently availible NIM A (1985)

FLOW RATE AT TARGET POINT k number of selected states (1 or 2)  dissociation at nozzle exit Q in input flux f fraction of atoms entering the first magnet t magnet transmission, calculated with ray-tracing code. Depends on v drift and T beam A attenuation factor

NOVOSIBIRSK HERMES IUCF FERRARA

z(mm)d(mm) B pt (T) nozzle02 skimmer magnet magnet Target point Ferrara Preliminary Design Parameters  Nozzle Temperature: 60 K  Microwave Dissociator,  y0.65  Input flux: 3.0 mbar l/s  Superconducting magnets in superfluid He bath (1.8 K)

Transmission t  ray tracing program (SCAN) that calculates particle trajectories through the magnetic field  Based on code from CERN, expanded to calculate beam densities and particle loss distributions

Transmission t

Est. Time = 72 hours = 72 x (2-4) x 0.1 =18-36 hours  Cryogenic surfaces can adsorb 2-3 layers of molecules before saturating  The magnet cryostat serves as a cryopump, and the chamber pressure is determined by the vapor pressure of H 2 ( ~ mbar at 2 K) until the surface begins to saturate Rate of particle loss inside chamber (atoms/sec) Total cryogenic surface area Regeneration Time Estimate

ATTENUATION  Atoms of polarized jet collide with background molecules (rest gas scattering)  Atoms of polarized jet collide with each other (intrabeam scattering) number of collisions per unit volume per unit time Atomic jet density Density of attenuating particles Interaction cross section Relative velocity of attenuating particle 1 and jet atoms 2

number of collisions per unit volume per unit time rest gas scattering we can simpify this formula by assuming the densities are constant within the transverse area defining and observing that we obtain but integrating, we have finally : normally used formula

intrabeam scattering: a tentative approach DENSITY r-dependence DENSITY z-dependence

number of collisions per unit volume per unit time intrabeam scattering: tentative approach Density of the jet atoms at the point r,,z that will arrive at the target point Density of atoms at the point r,,z

ATTENUATION EVALUATION HERMES attenuation has been calculated as the ratio beteween the measured flow- rate and a theoretical flow-rate, obtained from the formula, using SCAN for t,and n=1 for f, with A=0

 beam fn1dfn1dfn1dfn1d S ib S rg (measured) S ib S rg Hermes x E (Koch thesis) 0.80E0.07 Nov x E0.06 >0.95(guess) 0.92E0.10 IUCF x E NIMA E0.07 Ferrara x E0.06 >0.90 >0.70 ATTENUATION ESTIMATES PRL (1989) PRA (1992) }

Ferrara Pumping System Requirements HermesIUCFFerrara S 1 (l/s) 2x22002x22002x2200 Q 1,jet (mbar l/s) x x x3.0 P 1 (mbar) 1.2x x10 -4 <2.4x10 -4 S 2 (l/s) 2x10002x22002x2200 Q 2,jet (mbar l/s) x x1.70 p 2 (mbar) 2.0x x10 -5 <1.0x10 -5 p 3 (mbar) <10 -7 Ferrara RGA attenuation will be no more than that of Hermes and IUCF

HermesNov.IUCFFerrara Q meas (atoms/s) 6.8x x x10 16 >58x10 16 Q th 7.4x x x x10 16 Q meas / Q th 0.92E E E0.09 S ib S rg 0.80E E E0.07 >0.70 tt cell i (atoms/cm 2 ) 0.9x x x x10 14 tt jet * d jet =1 cm 0.3x x x x10 12 d jet =2 cm d jet =2 cm 0.7x x x10 12 ~10x10 12 Comparison of measured and calculated intensities i Assuming HERMES cell geometry *Assuming beam cross section P jet cross section

HermesNov.IUCFFerrara  Q in (mbar l/s) (molec/s) (molec/s) x x x x10 19 B pt (T) d mag (cm) f  drift (m/s) 1953 ~ T beam (K) 25.0 ~ d tp (cm) t

THE SF-HELIUM CRYOSTAT TOTAL HEAT LOAD = 4.6 W CONSUMPTION < 5 l/h

THE COILS: ● NiTi wires ● 14X22 turns COIL CROSS SECTION 19.2 X 19.5 mm 2 ● Pole : steel with an iron core ● Height=232 mm outer diam.=109.1 mm ● R c = 76.6 to 85.9 mm SEXTUPOLE MAGNET

Coil Quench TRAINING POLE TIP 4.2 K MEASUREMENTS

DENSITY r-dependence DENSITY z-dependence