Recent NMR Results in NCKU C. S. Lue ( 呂欽山 ) Department of Physics, National Cheng Kung University ( 國立成功大學物理系 )

Slides:



Advertisements
Similar presentations
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Advertisements

Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
NMR Studies of Metal-Insulator Transitions Leo Lamontagne MATRL286K December 10 th, 2014.
c18cof01 Magnetic Properties Iron single crystal photomicrographs
Electron Spin Resonance (ESR) Spectroscopy
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
1 1.Introduction 2.Electronic properties of few-layer graphites with AB stacking 3.Electronic properties of few-layer graphites with AA and ABC stackings.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Interacting charge and spin chains in high magnetic fields James S. Brooks, Florida State University, DMR [1] D. Graf et al., High Magnetic Field.
P461 - Semiconductors1 Superconductivity Resistance goes to 0 below a critical temperature T c element T c resistivity (T=300) Ag mOhms/m Cu
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Electronic structure of La2-xSrxCuO4 calculated by the
RAMAN SPECTROSCOPY Scattering mechanisms
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Semiconductors n D*n If T>0
Free electrons – or simple metals Isolated atom – or good insulator From Isolation to Interaction Rock Salt Sodium Electron (“Bloch”) waves Localised electrons.
Superconductivity Characterized by- critical temperature T c - sudden loss of electrical resistance - expulsion of magnetic fields (Meissner Effect) Type.
MAGNETIC MATERIALS  Origin of Magnetism  Types of Magnetism  Hard and Soft Magnets Magnetic Materials – Fundamentals and Device Applications Nicola.
IV. Electronic Structure and Chemical Bonding J.K. Burdett, Chemical Bonding in Solids Experimental Aspects (a) Electrical Conductivity – (thermal or optical)
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
Electron Spin Resonance Spectroscopy
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 28 Nuclear Magnetic Resonance Spectroscopy.
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
The University of Tennessee Resonant Ultrasound Spectroscopy at The University of Tennessee Veerle Keppens Department of Materials Science and Engineering.
Single spin detection Maksym Sladkov Top master nanoscience symposium June 23, 2005.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Berry Phase Effects on Electronic Properties
13. Magnetic Resonance Nuclear Magnetic Resonance Equations of Motion Line Width Motional Narrowing Hyperfine Splitting Examples: Paramagnetic Point Defects.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
The first principle calculation study on half-metallic spinel My research work: Presenter: Min Feng Advisor: Professor Xu Zuo College of Information Technical.
Spin dynamics in Ho 2-x Y x Sn 2 O 7 : from the spin ice to the single ion magnet G. Prando 1, P. Carretta 1, S.R. Giblin 2, J. Lago 1, S. Pin 3, P. Ghigna.
¶ CNISM-Dipartimento di Fisica “A. Volta,” Università di Pavia, Pavia, (Italy) ║ Max Planck Institute for Chemical Physics of Solids, Dresden,
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
Relativistic effects in ADF Erik van Lenthe, SCM.
Superconducting properties in filled-skutterudite PrOs4Sb12
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Summary of Collaborative Investigation – Na 5 ACu 4 (AsO 4 ) 4 Cl 2 (A = Rb, Cs) Jeffrey Clayhold, Miami University, USA Shiou-Jyh Hwu, Clemson University,
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Search for nuclear quadrupole resonance in an organic quantum magnet
c18cof01 Magnetic Properties Iron single crystal photomicrographs
Magnetic properties and NMR data of Rb2MnCl4, RbMnCl3 Kang, Byeongki
hyperfine interactions (and how to do it in WIEN2k)
Magnetic Frustration at Triple-Axis  Magnetism, Neutron Scattering, Geometrical Frustration  ZnCr 2 O 4 : The Most Frustrated Magnet How are the fluctuating.
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds : 59 Co NMR Study in PuCoGa 5 Kazuhiro Nishimoto Kitaoka lab. S.-H.
Complex magnetism of small clusters on surfaces An approach from first principles Phivos Mavropoulos IFF, Forschungszentrum Jülich Collaboration: S. Lounis,
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
NMR study of a mixed-metal molecular magnet Yutaka FUJII (University of Fukui) Contents  Introduction (Magnetic properties)  Experimental results  1.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
Derek F. Jackson Kimball. Collaboration Dmitry Budker, Arne Wickenbrock, John Blanchard, Samer Afach, Nathan Leefer, Lykourgas Bougas, Dionysis Antypas.
NMR Studies of nanoscale molecular magnets Y. Furukawa Y. Fujiyoshi S. Kawakami K. Kumagai F. Borsa P. Kogerler Hokkaido University (Japan) Pavia University.
Dynamics of novel molecular magnets V-ring and rare earth compounds Okayama Univ. H. Nojiri Introduction Magnetization step in V-rectangular ring Short.
MÖSSBAUER SPECTROSCOPY OF IRON-BASED SUPERCONDUCTOR FeSe
Mossbauer spectroscopy
Muons in condensed matter research Tom Lancaster Durham University, UK.
Qian Niu 牛谦 University of Texas at Austin 北京大学
Hyperfine interaction studies in Manganites
Zeeman effect HFS and isotope shift
NICPB, Tallinn, Estonia: R. Stern I. Heinmaa A. Kriisa E. Joon
Superconductivity Res. T
The Free Electron Fermi Gas
Ion-beam, photon and hyperfine methods in nano-structured materials
Continuing Influence of Shell Effects in the Nuclear
Presentation transcript:

Recent NMR Results in NCKU C. S. Lue ( 呂欽山 ) Department of Physics, National Cheng Kung University ( 國立成功大學物理系 )

Outline: I: Fundamental NMR principles: (i) NMR frequency shifts (ii) Quadrupole interactions (ii) Spin-lattice relaxation rates II: Studied systems: (i) 27 Al NMR study of electronic structure of Al 3 M (ii) 51 V NMR study of spin gap nature of BaCu 2 V 2 O 8 (iii) 51 V NMR study of pseudogap characteristics of Fe 2 VAl

Bulk Properties: collective response of the system to an external perturbation Electronic property:  =  E/  J Magnetic property:  =  M/  H Thermal property: C =  U/  T Optical property:

Merits of NMR: local probe of electronic and magnetic features Site selected Impurity phase isolated Sensitive to the excitation near the Fermi-level

Central transition 71 Ga NMR line shape in NbGa 3 D0 22 crystal structure

Simple resonance theory: Zeeman energy:  E = o h =  n  H o Nuclear spin I: 2I +1 energy states For I = 3/2, (MHz) H = 0H = H o  

NMR in Solids: (i) Magnetic hyperfine interactions : couplings between nuclear magnetic moment  n and electronic magnetic moment  e Fermi-contact dipolar orbital s-like e - non-s-character e - K s K an K orb

NMR frequency shifts: Site-I o NMR signal Site-II  ( MHz )  Site-I Site-II

NMR Shift & Magnetic susceptibility (a) Simple metals: (s-electrons) (b) d-electron based materials: Note: Bulk diamagnetic term  L does not enter because of the small hyperfine field.

(ii) Electric hyperfine interactions: couplings between nuclear quadrupole moment eQ and electric field gradient (For I > 1/2 in the non-cubic environments with axial symmetry ) +q -q +q -q +q-q+q E a > E b

Satellite Lines: I = 3/2 EFG = 0 EFG  0 o o + Q /2 o - Q /2 o

27 Al (I = 5/2) NMR powder pattern in Cr 2 AlC

Spin-lattice relaxation time (T 1 ): M(t) t

Recovery curve of 11 B in ZrB 2

T 1 & Electronic origins

Magnetic dipolar broadening of rigid lattices: (Simplest case: cubic) r ~ 2A and  ~  B H loc ~  /r 3 ~ 1 gauss H o = 1 T = 10 4 gauss H loc /H o =  / o ~ If o ~ MHz, intrinsic line width  ~ kHz Motional narrowing: motional effects narrow the line width in normal liquids.

Varian 300 Solid-State NMR Home-built NMR probe-head (Top-loaded) 7.05 T superconducting magnet

D0 23 -type Al 3 Zr & Al 3 Hf Potential aerospace applications: High melting point Low mass density Large elastic modulus Shortage: Poor ductility Interesting issues: Electronic properties Structural stability

27 Al NMR central transitions of Al 3 Zr & Al 3 Hf Central transition line shapes: Anisotropic Knight shift & Quadrupole effects High-frequency peak: Al-III Low-frequency part: Al-I & Al-II

Satellite lines for the three Al sites in Al 3 Zr and Al 3 Hf

Partial 27 Al NMR results of Al 3 Zr & Al 3 Hf AlloyAl-IAl-IIAl-IIITotal Al 3 Zr Al 3 Hf Smaller Fermi-level DOS in Al 3 Zr → Al 3 Zr is more stable than Al 3 Hf with respect to the D0 23 structure, consistent with the fact that Al 3 Hf becomes more favorable with D0 22 as T > 650 C. Fermi-level s-DOS (states/eV atom) for each Al crystallographic site

Oxidation states: Magnetic Cu 2+ (S = ½) Nonmagnetic V 5+ Spin chains: CuO 4 square plaquette + edge-sharing V(I)O 4 tetrahedra Alternating coupling ratio J 2 /J 1 = 0.2 Spin gap  = 230 K

Bulk magnetic susceptibility of BaCu 2 V 2 O 8 Ghoshray et al. PRB 71 (2005)He et al. PRB 69 (2004)

Models for the S=1/2 one-dimensional spin chain compounds 1.Alternating-chain model 2.Dimer-chain model J1J1 J2J2 J JJ J1J1 J1J1 JJ JJ From the analyses of the bulk susceptibility and heat capacity, He et al. concluded that the alternating chain model is more suitable for the understanding of the gap characteristics of BaCu 2 V 2 O 8.

51 V NMR investigation of BaCu 2 V 2 O 8

T-dependent NMR shifts of BaCu 2 V 2 O 8

T-dependent NMR T 1 of BaCu 2 V 2 O 8

NMR parameters of BaCu 2 V 2 O 8 Alternating-chain model:  K (I) = 360 K  K (II) = 370 K  R (II) = 440 K For V-II,  R /  K ~ 1.2 Dimer-chain model :  K (I) = 460 K  K (II) = 470 K  R (II) = 450 K For V-II,  R /  K ~ 1 Summary: Both models seem to be suitable for the understanding of the spin gap nature in BaCu 2 V 2 O 8.

L2 1 Heusler-type Fe 2 VAl Transport: semi-conducting behavior Magnetism: paramagnetic behavior (Pauli or Van-Vleck?) Low-T specific heat: possible 3d heavy fermion  = 14 mJ/mol K 2 mass enhancement m*/m ~ ) LiV 2 O 4 : 3d heavy fermion? FeSi: 3d Kondo insulator

Theoretical calculations on Fe 2 VAl G. Y. Guo, G. A. Botton, and Y. Nishino, J. Phys.: Condens. Matter 10, L119 (1998). D. J. Singh and I. I. Mazin, Phys. Rev. B 57, (1998). R. Weht and W. E. Pickett, Phys. Rev. B 58, 6855 (1998). M. Weinert and R. E. Watson, Phys. Rev. B 58, 9732 (1998). A. Bansil, S. Kaprzyk, P. E. Mijnarends, and J. Tobola, Phys. Rev. B 60, (1999).

1. Narrow NMR line width: nonmagnetic 2. NMR shifts: For 51 V, K o = 0.61% is not likely due to the Pauli paramagnetism. → Van-Vleck mechanism dominated Band splitting: E g ~ 0.22 eV

T-dependent NMR T 1 of Fe 2 VAl E g ~ 0.27 eV Low-T data: V partial Fermi-level DOS D(E F ) = states/eV atom Total Fermi-level DOS D(E F ) = states/eV atom → Semi-metallic characteristics

1. Sample-dependent heat capacity 2. Solid line: C(T) =  T +  T 3 +  T 5  Small  = 1.5 mJ/mol K 2 3. Magnetic cluster induced low-T upturn in 

Field-dependent specific heat in Fe 2 VAl Multi-level Schottky anomaly: Conclusions: the reported  enhancement is not intrinsic → Fe 2 VAl is a false d-electron heavy fermion.