1 Spatial variations of the electron-to- proton mass ratio: bounds obtained from high-resolution radio spectra of molecular clouds in the Milky Way S.

Slides:



Advertisements
Similar presentations
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
Advertisements

Nuria Marcelino (NRAO-CV) Molecular Line Surveys of Dark Clouds Discovery of CH 3 O.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
Fundamentals of Radio Astronomy Lyle Hoffman, Lafayette College ALFALFA Undergraduate Workshop Arecibo Observatory, 2009 Jan. 12.
Dark Matter Burners at the Galactic Center Igor Moskalenko & Larry Wai (STANFORD & KIPAC)
HI Stacking: Past, Present and Future HI Pathfinder Workshop Perth, February 2-4, 2011 Philip Lah.
Ammonia and CCS as diagnostic tools of low-mass protostars Ammonia and CCS as diagnostic tools of low-mass protostars Itziar de Gregorio-Monsalvo (ESO.
Mapping HI absorption at z=0.026 against a resolved background CSO Andy Biggs, Martin Zwaan, Jochen Liske European Southern Observatory Frank Briggs Australian.
HARP-B/ACSIS on the JCMT: spatially resolved chemistry of warm gas John Richer (Cavendish, Cambridge) On behalf of HARP and ACSIS teams.
PRISMAS PRISMAS PRobing InterStellar Molecules with Absorption line Studies M. Gerin, M. Ruaud, M. de Luca J. Cernicharo, E. Falgarone, B. Godard, J. Goicoechea,
A Search For Fragmentation in Starless Cores with ALMA Scott Schnee (NRAO) Hector Arce, Tyler Bourke, Xuepeng Chen, James Di Francesco, Michael Dunham,
SKA Science Measuring Variations in the Fundamental Constants with the SKA Steve Curran School of Physics School of Physics University of New South Wales.
Spitzer mid-IR image of the DR21 region in the Cygnus-X molecular complex Image Credit: NASA, Spitzer Space Telescope.
The Green Bank Telescope a powerful instrument for enhancing ALMA science Unblocked Aperture Low sidelobes gives high dynamic range Resistance to Interference.
Fundamentals of Radio Astronomy Lyle Hoffman, Lafayette College ALFALFA Undergraduate Workshop Union College, 2005 July 06.
Cosmological Evolution of the Fine Structure Constant Chris Churchill (Penn State)  = e 2 /hc  = (  z -  0 )/  0 In collaboration with: J. Webb,
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
A Primer on SZ Surveys Gil Holder Institute for Advanced Study.
Taking “Fingerprints” of Stars, Galaxies, and Other Stuff
Comet observing program: Water in comets: water ice ~50% of bulk composition of cometary nuclei water vapor: sublimation drives cometary activity close.
Lecture 3 INFRARED SPECTROMETRY
Stefan Truppe MEASUREMENT OF THE LOWEST MILLIMETER- WAVE TRANSITION FREQUENCY OF THE CH RADICAL.
ElectroScience Lab IGARSS 2011 Vancouver Jul 26th, 2011 Chun-Sik Chae and Joel T. Johnson ElectroScience Laboratory Department of Electrical and Computer.
1 High-z galaxy masses from spectroastrometry Alessio Gnerucci Department of Physics and Astronomy University of Florence 13/12/2009- Obergurgl Collaborators:
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
A hot topic: the 21cm line I Benedetta Ciardi MPA.
Spectral Line Survey with SKA Satoshi Yamamoto and Nami Sakai Department of Physics, The Univ. of Tokyo Tomoya Hirota National Astronomical Observatory.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Local tests of spatial variation of m e /m p S. A. Levshakov Department of Theoretical Astrophysics Physical-Technical Institute, St. Petersburg Department.
Mini-workshop Fundamental Physics ESO/Garching Sep, 2014 С.А. Левшаков Физико-технический институт им. А.Ф. Иоффе Санкт-Петербург.
What is Millimetre-Wave Astronomy and why is it different? Michael Burton University of New South Wales.
10 January 2006AAS EVLA Town Hall Meeting1 The EVLA: A North American Partnership The EVLA Project on the Web
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
Radio Astronomy Emission Mechanisms. NRAO/AUI/NSF3 Omega nebula.
Roland Crocker Monash University The  -ray and radio glow of the Central Molecular Zone and the Galactic centre magnetic field.
ASTROCHEMISTRY IN THE SUBMM DOMAIN Bérengère Parise With kind inputs from my MPIfR colleagues: A. Belloche, S. Leurini, P. Schilke, S. Thorwirth, F. van.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
Investigation of different types radio sources by IPS method at 111MHz S.A.Tyul’bashev Pushchino Radio Astronomy Observatory, Astro Space Center of P.N.Lebedev.
Collaborators Blair Savage, Bart Wakker (UW-Madison) Blair Savage, Bart Wakker (UW-Madison) Ken Sembach (STScI) Ken Sembach (STScI) Todd Tripp (UMass)
Observational Determinations of the Proton to Electron Mass Ratio (  ) in the Early Universe Rodger Thompson- Steward Observatory, University of Arizona.
Masers Surveys with Mopra: Which is best 7 or 3 mm? Simon Ellingsen, Maxim Voronkov & Shari Breen 3 November 2008.
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
ALMA Science Examples Min S. Yun (UMass/ANASAC). ALMA Science Requirements  High Fidelity Imaging  Precise Imaging at 0.1” Resolution  Routine Sub-mJy.
ISMS Symposium Champaign-Urbana, 19 June 2014 Wim Ubachs VU University Amsterdam Effelsberg Search for a variation of the proton-electron mass ratio from.
A Stark decelerator for ammonia molecules
Extragalactic Absorption – The Promise of the EVLA Karl M. Menten Max-Planck-Institute for Radio Astronomy Christian Henkel (MPIfR), with Christian Henkel.
MW Spectroscopy of  -Alanine and a Search in Orion-KL Shiori Watanabe ( Kyoto Univ. JAPAN ), Satoshi Kubota, Kentarou Kawaguchi ( Okayama Univ. JAPAN.
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Studying possible variations of proton-to-electron mass ratio with microwave spectra of molecules M G Kozlov, V V Flambaum, S A Levshakov, D Reimers, S.
Daisuke Ando, * Susumu Kuma, ** Masaaki Tsubouchi,** and Takamasa Momose** *Kyoto University, JAPAN **The University of British Columbia, CANADA SPECTROSCOPY.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Alexander V. Lapinov, G.Yu.Golubiatnikov, Inst. of Applied Physics of RAS, Nizhny Novgorod A.P.Velmuzhov Inst. of Metalloorganic Chemistry of RAS, Nizhny.
Neutral Atomic Hydrogen Gas at Forbidden Velocities in the Galactic Plane Ji-hyun Kang NAIC Seoul National University Supervisor :Bon-Chul Koo 213 th AAS.
P. JANSEN, W. UBACHS, H. L. BETHLEM
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
Development of a Fast Ion Beam Spectrometer for Molecular Ion Spectroscopy Departments of Chemistry and Astronomy University of Illinois at Urbana-Champaign.
Test of Variation in m p /m e using 40 CaH + Molecular Ions in a String Crystal NICT Masatoshi Kajita TMU Minori Abe We propose to test the variation in.
Fumitaka Nakamura (National Astronomical Observatory of Japan)
The real discovery is not to discover new lands,
Characterisation and Control of Cold Chiral Compounds
An Arecibo HI 21-cm Absorption Survey of Rich Abell Clusters
High Resolution Submm Observations of Massive Protostars
Spin-Rotation Spectroscopy and Dynamics of Hydroxymethyl Radical (H2COH) Chih-Hsuan Chang, Fang Wang, and David J. Nesbitt JILA Illinois Symposium on.
Molecular Gas Distribution of our Galaxy: NANTEN Galactic Plane Survey
Strong Limits on a Variable Proton to Electron Mass Ratio ()
Presentation transcript:

1 Spatial variations of the electron-to- proton mass ratio: bounds obtained from high-resolution radio spectra of molecular clouds in the Milky Way S. A. Levshakov Dept. Theoretical Astrophyscis A.F. Ioffe Physical-Technical Institute St. Petersburg

2 Contents Short Introduction Part I. What is known Part II. What is new Conclusions

3  = m e /m p  = e 2 /(hc) Atomic  Molecular Discrete Spectra allow to probe variability of through relativistic corrections to atomic energy,   (  Z) 2 R corrections for the finite nuclear mass,    R and important for molecules less important for atoms Z – atomic number R – Rydberg constant

4 fine-structure levels:   =   molecular rotational transitions: 2   =     atomic levels, in general:  ’=  + qx + …   =   2Q x = (  ’  ) Q = q/  dimensionless sensitivity coefficient q-factor [cm -1 ] individual for each atomic transition  =  ’-    =  ’-  either spatial or temporal differences

5 Quasar spectra Redshift: z = ( - 0 )/ 0 Part I. Cosmological Temporal Variations VLT/UVES z  2  t  yr

6 Single ion  /  measurements FeII Q  0.04 Q   Q  0.06   = 1 2 z 1 – z 2 (Q 2 – Q 1 )(1+z) = vv 2c  Q FeI Q  0.08 Q  0.03  Q  0.05

7 QSO HE neutral iron FeI resonance transitions at z=0.45 Doppler width  1 km/s ( ! ) Simple one-component profiles Q  0.08Q  0.03  v = -200  200 m/s  /  = 7  7 ppm

8 Q the highest resolution spectrum, FWHM = 3.8 km/s FeII resonance transitions at z=1.84 Current estimate:  v = -130  90 m/s  /  = 4.0  2.8 ppm

9 brightest QSO HE FeII resonance transitions at z= FeII pairs {1608,X} X = Current estimate: 1) updated sensitivity coefficients (Porsev et al.’07) 2) Accounting for correlations between different pairs {1608,X}  /  =  1.79 ppm The most stringent limit: |  /  | < 2 ppm Calibration uncertainty of  50 m/s translates into the error in  /  of  2 ppm cf. pixel size  2-3 km/s

10 Conclusions (Part I) No cosmological temporal variations of  at the level of 2 ppm have been found (same for  )

11 Part II. Spatial Variations (search for scalar fields) dependence of masses and coupling constants on environmental matter density Chameleon-like scalar field models:  =  (  )  =  (  )  - ambient matter density Khoury  Weltman’04 Bax et al.’04 Feldman et al.’06 Olive  Pospelov’08  lab /  ISM 

12 Ammonia Method to probe m e /m p vibrational, and rotational intervals in molecular spectra E vib : E rot   1/2 :   vib /  vib = 0.5  /   rot /  rot = 1.0  /  the inversion vibrational transition in ammonia, NH 3,  inv = 23.7 GHz  inv /  inv = 4.5  /  Flambaum  Kozlov’07 Q inv / Q vib = 9

13 N N H H H H H H H H H H H H N N eV  1.3 cm U(x) x  inv  exp(-S) the action S   -1/2 Quantum mechanical tunneling double-well potential of the inversion vibrational mode of NH 3

14 By comparing the observed inversion frequency of NH 3 with a rotational frequency of another molecule arising co-spatially with ammonia, a limit on the spatial variation of  /  can be obtained :  /  = 0.3(V rot – V inv )/c  0.3  V /c  V =  V noise   V  Var(  V) = Var(  V noise )  Var(  V  )  V noise = 0  V =  V 

15 23 GHz 18 GHz 93 GHz Hyper-fine splittings in NH 3, HC 3 N  N 2 H +

16 Dense molecular clouds, n H  10 4 cm -3, T kin  10K High-mass clumps, M  100M solar, Infrared Dark Clouds (IRDCs) Low-mass cores, M  10M solar Protostellar cores containing IR sources Starless cores (prestellar cores) Dynamically stable against grav contraction Unstable n H  10 5 cm -3 n H  10 5 cm -3

17 CS CO HCO + CCS NH 3 N2H+N2H+ N2D+N2D+ H3+H3+ H2D+H2D+ D2H+D2H+ D3+D3+ H2H2 H+H+ e-e- 15,000 AU 7,000 AU 5,000 AU 2,000 AU 10 4 cm cm -3 Molecular differentiation within a low-mass core

18 Perseus molecular cloud D  260 pc 6  2 o or 27  9 pc M  10 4 M solar n H  100 cm -3 Preliminary obtained results (Levshakov, Molaro, Kozlov 2008, astro-ph/ )

19 Perseus molecular cores Rosolowsky et al ammonia spectral atlas of 193 molecular cores in the Perseus cloud Observations: 100-m Green Bank Telescope (GBT) GBT beam size at 23 GHz is FWHM = 31arcsec (0.04 pc) Spectral resolution = 24 m/s (!) Single-pointing, simultaneous observations of NH 3 and CCS lines

20 pure turbulent broadening,  (CCS) =  (NH 3 ) pure thermal,  (CCS) = 0.55  (NH 3 )  V n=98 = 44  13 m/s  V n=34 = 39  10 m/s  V n=21 = 52  7 m/s CCS vs NH 3 symmetric profiles  /  = (5.2  0.7)  10 -8

21 Pipe Nebula Rathborne et al molecular cores in Pipe Nebula Observations: 100-m Green Bank Telescope (GBT) Spectral resolution = 23 m/s (!) Single-pointing, simultaneous observations of NH 3 and CCS lines GBT beam size at 23 GHz is FWHM = 30arcsec (0.02 pc)

22  V n=8 = 69  11 m/s CCS vs NH 3

23 New results (Astron.Astrophys., astro-ph/ ) 32m MEDICINA (Bologna) Italy 100m EFFELSBERG (Bonn) Germany 45m NOBEYAMA (NRAO) Japan Nov 24-28, 2008 Feb 20-22, 2009 Apr 8-10, 2009 Collaboration with Alexander Lapinov Christian Henkel Takeshi Sakai NH 3  HC 3 N NH 3  N 2 H + 41 cold and compact molecular cores in the Taurus giant molecular complex 55 molecular pairs in total Paolo Molaro Dieter Reimers

24 Observations: 32-m Medicina Telescope: beam size at 23 GHz, FWHM = 1.6 arcmin position switching mode two digital spectrometers ARCOS (ARcetri COrrelation Spectrometer) and MSpec0 (high resolution digital spectrometer) Spectral res. = 62 m/s (NH 3 ), 80 m/s (HC 3 N) ARCOS Spectral res. = 25 m/s (NH 3 ), 32 m/s (HC 3 N) MSpec0 100-m Effelsberg Telescope: beam size at 23 GHz, FWHM = 40 arcsec frequency switching mode K-band HEMT (High Electron Mobility Transistor) receiver, backend FFTS (Fast Fourier Transform Spectrometer) Spectral res. = 30 m/s (NH 3 ), 40 m/s (HC 3 N) 45-m Nobeyama Telescope: beam size at 23 GHz, FWHM = 73 arcsec HEMT receiver (NH 3 ), and SIS (Superconductor-Insulator- Superconductor) receiver (N 2 H + ) Spectral res. = 49 m/s (NH 3 ), 25 m/s (N 2 H + ) position switching mode Independent Doppler tracking of the observed molecular lines

25 Effelsberg 100-m

26 Nobeyama 45-m

27 total n=55 co-spatially distributed Black: 1  <1.2 Red: 1.2  <1.7  = b(NH 3 ) b(HC 3 N)  = 1.7 for pure thermal broadening

28 Results total sample, n=55 mean  V = 14.1  4.0 m/s scale = 29.6 m/s (standard deviation) median  V = 17 m/s thermally dominated, n=7 (red points) mean  V = 21.5  2.8 m/s scale = 13.4 m/s median  V = 22 m/s co-spatially distributed, n=23 (red  black points) mean  V = 21.2  1.8 m/s scale = 3.4 m/s median  V = 22 m/s effelsberg, n=12 mean  V = 23.2  3.8 m/s scale = 13.3 m/s median  V = 22 m/s nobeyama, n=9 mean  V = 22.9  4.2 m/s scale = 12.7 m/s median  V = 22 m/s NH 3  HC 3 N NH 3  N 2 H +

29 Poor accuracy in lab frequencies - main source of uncertainties NH 3  sys = 0.6 m/s HC 3 N  sys = 2.8 m/s N2H+N2H+  sys = 14 m/s  V = 23.2  3.8 stat  2.8 sys m/s Effelsberg:  /  = (2.2  0.4 stat  0.3 sys )  10 -8

30 GBT vs Effelsberg  V  52  7 m/s  V  23.2  3.8 m/s CCS  NH 3 HC 3 N  NH (1) MHz Yamamoto et al.’90 – radioastronomical estimate (10) MHz CDMS’05 - catalogue (4) MHz Lovas et al.’92 - laboratory 1 kHz at 22.3 GHz  v  13.4 m/s  V  22  7 m/s  V  6  7 m/s

31 new precise lab freqencies badly needed !  lab  1 m/s

32 Constraint on  -variation fine-structure transition of carbon [CI] 609  m low-lying rotational lines of 13 CO J=1-0 (2.7 mm), J=2-1 (1.4 mm) observations of cold molecular clouds F =  2 /   F/F = 2   /  -   /  =  v/c TMC-1 Schilke et al.’95 L 183 Stark et al.’96 Ori A,B Ikeda et al.’02  v = v rot - v fs mean  V = 0  60 m/s scale = 215 m/s (standard deviation) median  V = 0 m/s sample size n=13 FWHM = m/s FWHM = 100 m/s |  F/F| < 0.3 ppm |  /  | < 0.15 ppm

33 Conclusions (Part II) expected  /    velocity offset  V = 23  4 stat  3 sys m/s  /  = (2.2  0.4 stat  0.3 sys )   conservative upper limits at z=0 : |  /  | < 1.5   no known systematic at the level of 20 m/s reproduced at different facilities  at high-z,  ISM (z=0)   ISM (z>0) |  /  |  3   verification – other molecules new targets if no temporal dependence of  (t) is present