Generation of twin photons in Triple Microcavities Jérôme TIGNON C. Diederichs, D. Taj, T. Lecomte, C. Ciuti, Ph. Roussignol, C. Delalande Laboratoire.

Slides:



Advertisements
Similar presentations
Classical behaviour of CW Optical Parametric Oscillators T. Coudreau Laboratoire Kastler Brossel, UMR CNRS 8552 et Université Pierre et Marie Curie, PARIS,
Advertisements

ULTRAFAST CONTROL OF POLARITON STIMULATED SCATTERING IN SEMICONDUCTOR MICROCAVITIES Cornelius Grossmann1 G. Christmann, C. Coulson and J.J. Baumberg Nanophotonics.
PROBING THE BOGOLIUBOV EXCITATION SPECTRUM OF A POLARITON SUPERFLUID BY HETERODYNE FOUR-WAVE-MIXING SPECTROSCOPY Verena Kohnle, Yoan Leger, Maxime Richard,
Current POLARITON LIGHT EMITTING DEVICES: RELAXATION DYNAMICS Simos Tsintzos Dept of Materials Sci. & Tech Microelectronics Group University of Crete /
Strong coupling between Tamm Plasmon and QW exciton
Spatial coherence and vortices of polariton condensates
Multi-wave Mixing In this lecture a selection of phenomena based on the mixing of two or more waves to produce a new wave with a different frequency, direction.
Parametric Down-conversion and other single photons sources December 2009 Assaf Halevy Course # 77740, Dr. Hagai Eisenberg 1.
Optical sources Lecture 5.
Quantum Coherent Control with Non-classical Light Department of Physics of Complex Systems The Weizmann Institute of Science Rehovot, Israel Yaron Bromberg,
Yoan Léger Laboratory of Quantum Opto-electronics Ecole Polytechnique Fédérale de Lausanne Switzerland.
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,
INNOVATIVE OPTICAL PARAMETRIC SOURCES USING ISOTROPIC SEMICONDUCTORS E. Rosencher, M. Baudrier, R. Haidar,A. Godard, M. Lefebvre and Ph. Kupecek* ONERA.
Transient Four-Wave Mixing Spectroscopy on PbS Quantum Dots Kevin Blondino (Florida State University) Advisors: Dr. Denis Karaiskaj, USF (faculty) Jason.
Optical Engineering for the 21st Century: Microscopic Simulation of Quantum Cascade Lasers M.F. Pereira Theory of Semiconductor Materials and Optics Materials.
Positronium Rydberg excitation in AEGIS Physics with many positrons International Fermi School July 2009 – Varenna, Italy The experimental work on.
Patrick Sebbah Nicolas Bachelard, Sylvain Gigan Institut Langevin, ESPCI ParisTech CNRS UMR 7587, Paris A. Christian Vanneste, Xavier Noblin LPMC – Université.
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK. Electrically pumped terahertz SASER device using a weakly coupled AlAs/GaAs.
Generation of short pulses
Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
TWO-PHOTON ABSORPTION IN SEMICONDUCTORS Fabien BOITIER, Antoine GODARD, Emmanuel ROSENCHER Claude FABRE ONERA Palaiseau Laboratoire Kastler Brossel Paris.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Characterization and optimization of entangled states produced by a self-phase-locked OPO J. Laurat, G. Keller, J.A.O. Huguenin T. Coudreau, N. Treps,
Narrow transitions induced by broad band pulses  |g> |f> Loss of spectral resolution.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Ultrafast Spectroscopy
Ch 6: Optical Sources Variety of sources Variety of sources LS considerations: LS considerations: Wavelength Wavelength  Output power Output power Modulation.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
High-Q small-V Photonic-Crystal Microcavities
All-Fiber Optical Parametric Oscillator (FOPO) Chengao Wang.
Fiber Optic Light Sources
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
. Random Lasers Gregor Hackenbroich, Carlos Viviescas, F. H.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Chapter 8. Second-Harmonic Generation and Parametric Oscillation
Charge Carrier Related Nonlinearities
Pure-state, single-photon wave-packet generation by parametric down conversion in a distributed microcavity M. G. Raymer, Jaewoo Noh* Oregon Center for.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
A. Imamoglu Department of Electrical and Computer Engineering, and Department of Physics, University of California, Santa Barbara, CA Quantum Dot.
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
Itoh Lab. M1 Masataka YASUDA
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P.
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Resonant medium: Up to four (Zn,Cd)Se quantum wells. Luminescence selection is possible with a variation of the Cd-content or the well width. The front.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
Cavity soliton switching and pattern formation in an optically-pumped vertical-cavity semiconductor amplifier Laboratoire de Photonique et de Nanostructures.
Dye-doped polymer micro-cavity
Dynamics of Low Density Rydberg Gases Experimental Apparatus E. Brekke, J. O. Day, T. G. Walker University of Wisconsin – Madison Support from NSF and.
Alberto Amo, C. Adrados, J. Lefrère, E. Giacobino, A. Bramati
Multimode quantum optics Nicolas Treps Claude Fabre Gaëlle Keller Vincent Delaubert Benoît Chalopin Giuseppe Patera Virginia d’Auria Jean-François Morizur.
Broadband High-resolution Spectroscopy with Fabry-Perot Quantum Cascade Lasers Yin Wang and Gerard Wysocki Department of Electrical Engineering Princeton.
1 II-VI semiconductor microcavities microcavity physics polariton stimulation prospects.
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
Direct Observation of Polariton Waveguide in ZnO nanowire at Room Temperature motivation abstract We report the direct experimental evidence of polariton.
§8.4 SHG Inside the Laser Resonator
Four wave mixing in submicron waveguides
Circuit QED Experiment
Integrated Semiconductor Modelocked Lasers
Nergis Mavalvala Aspen January 2005
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
A. Bramati M. Romanelli E. Giacobino
High Power, Uncooled InGaAs Photodiodes with High Quantum Efficiency for 1.2 to 2.2 Micron Wavelength Coherent Lidars Shubhashish Datta and Abhay Joshi.
Advanced Optical Sensing
Kenji Kamide* and Tetsuo Ogawa
Jaynes-Cummings Hamiltonian
Presentation transcript:

Generation of twin photons in Triple Microcavities Jérôme TIGNON C. Diederichs, D. Taj, T. Lecomte, C. Ciuti, Ph. Roussignol, C. Delalande Laboratoire Pierre Aigrain (LPA), École Normale Supérieure, Paris, France A. Lemaître, J. Bloch, O. Mauguin, L. Largeau Laboratoire Photonique et Nanostructures (LPN), CNRS, Marcoussis, France C. Leyder, A. Bramati, E. Giacobino Laboratoire Kastler Brossel (LKB) Ecole Normale Supérieure, Paris, France

Motivations Fundamental  Better understanding and control of light-matter interaction in semicond. nanostructures Practical  Generating quantum correlated photons is the basis for quantum optics applications such as quantum cryptography.  Working systems rely on large and complex optical sources  Possibility to develop an integrated micro-generator of twin photons ?

Outline  Non-linear optics Parametric conversion Phase matching OPOs  Light-matter interaction in semiconductors Semiconductor microcavities Weak and Strong coupling regime OPO in single microcavities A triply resonant OPO in a VCSEL-like structure  Quantum optics Noise measurements Quantum correlated photon pairs Fundamental concepts / technical results

Optical Parametric Oscillation

2(  pump,k pump ) (  signal,k signal ) + (  idler,k idler ) Oscillation Paramétrique Optique (OPO)  Parametric conversion (for photons): 0 pp ii ss  p ss ii  (2)  (3)  pump  signal  idler  In a cavity: oscillation above a threshold (gain = cavity losses) pp ss ii pump NL Crystal (BBO) cavity - Simple cavities, double (DROPO), triple (TROPO) - Applications : - generation of new frequencies - quantum optics (cryptography, etc).

OPO : the phase-matching problem ISP ISP kkk      Problem : phase matching !!  Solutions : (1) birefringence - pbm : GaAs isotropic  Solutions : (2) quasi-phase matching - ex : PPLN - reduction of the size of OPO (  10 cm) - complex fabrication / alignement

Light-matter interaction in semiconductor microcavities

Miroir de Bragg Miroir de Bragg Cavité Cavity Mode Fabry-Pérot cavity  meV Photon confinement : semiconductor microcavity - Planar F.P. cavity, monolithic - Finesse  10 3, 10 4

Without confinement (3D) Microcavity Photon confinement : mode dispersion

 xx cc axe de croissance Quantum Well: exciton k // =photon k // k z free photon Fabry-Pérot Microcavity: Selection of a photon k z exciton k // =photon k // k z quantified excitoncavité polariton exciton photons 0 0 Strong and Weak Coupling Regime

A brief story of microcavities (a) - In the weak coupling regime: Vertical cavity lasers (VCSELs, Soda et al. Tokyo, 1979) : low T°, optical pumping : CW, room T° : Ethernet, Fiber Channel etc. - Isotropic emission - Low threshold - Parallelisation fabrication / test

- Strong Coupling, Microcavity-Polaritons : C. Weisbuch et al. PRL 69 (1992). exciton cavity X laser A brief story of microcavities (b)

- First studies : cw spectroscopy (Rabi splitting, dispersion, T° etc). population dynamics (ps, time-resolved PL) - Today: Coherent and non-linear dynamics (fs, P/p, FWM) Stimulated emission, parametric scattering A brief story of microcavities (c)

OPO with polaritons in a microcavity (a) P.G. Savvidis et al. PRL (2000) signal idler  k // EE EE pump Pump : 17° Idler Signal 0° OPO in a nanostructure ! OPO with mixt light-matter excitations ! 90°

Strong resonant  (3) polaritonique nonlinearity Low OPO threshold R. M. Stevenson et al. PRL (2000) OPO with polaritons in a microcavity (b) o C. Ciuti et al., Phys. Rev. B 62, 4825 (2000) (théorie quantique) o D. M. Whittaker et al., Phys. Rev. B 63, (2001) (théorie semi-classique) Theory :

Gisin et al, Quantum cryptography, REV. MOD. PHYS. 74 (2002) Motivations:  -OPO  Source of twin photons ? quantum optics (quantum cryptography) o Strong coupling regime required Low temperature (max 50 K) o Idler emitted at very large angle + weakly coupled to outside Inefficient collection for twin photons applications o Pump injection at large angle No electrical injection with an integrated system DRAWBACKS: s p i

What we want! o Phase-matching without the strong coupling exciton / photon Increase the temperature o High idler intensity (at a smaller emission angle) Efficient collection for twin photons applications o Pump injection at 0° Electrical injection possible

Micro-OPO in triple microcavities

New Design: a Triple Microcavity C. Diederichs and J. Tignon, APL 87 (2005) Coupling DBR 1 DBR GaAs/AlAs -GaAs cavity 1 Substrate -GaAs cavity 2 -GaAs cavity 3 DBR GaAs/AlAs Coupling DBR 2 In 0.07 GaAs QW Z growth axis 8  m In 0.07 GaAs QW

Angle (degree) Energy (eV) Optical modes (transfer matrices simulation)  Cavity degeneracy lifted For dual-cavities : see e.g. Stanley et al., APL 65 (1994) : strong coupling between 2 cavities Pellandini et al., APL 71 (1997) : dual- laser emission Armitage et al., PRB 57 (1998) : polariton dispersion Uncoupled cavities |Coupled cavities Condition for 2 coupled cavities :  Photonics modes delocalized throughout the whole structure

Inclusion of QWs / Weak and Strong coupling regime Angle (degree) Energy (eV) Strong CouplingWeak Coupling Strong exciton-photon regime Six polariton modes Cavity-mode degeneracy lifted Three coupled photonic modes

Experimental setup Sample Growth: LPN

Tuning of the photon modes Single cavities X  Spacer wedge along X by interruption of the rotation at 0° X E cav Triple cavity  Cavity 1 : interruption at 0° (X)  Cavity 2 : no interruption  Cavity 3 : interruption at 90° (Y) X Y E cav X

C. Diederichs et al, NATURE 440 (2006) OPO (a)  all 0°  energy conservation T = 6 K

OPO (b)  idler: negative dispersion  momentum conservation T = 6 K C. Diederichs et al, NATURE 440 (2006)

Properties of the OPO  Below threshold : 2 kW/cm 2  Above threshold : 3.2 kW/cm 2  gain of 4800  narrowing of the signal and idler from 1 meV to below 200  eV  high conversion efficiency under cw excitation = 10 -2

Phase-matching dependence  x : “phase-matching” parameter  Strong non-linear emission of the signal and idler states only for x=0, i.e. for  E=0,  k=0 (phase-matching).

Power dependence (a)  OPO threshold : 2.4 kW/cm 2

Power dependence (b)  Lasing at 6 kW/cm 2  Low OPO threshold Out of phase-matching

Comments / saturation of the idler - Idler at higher energy is degenerate with QW absorption continuum - Idler (and not Signal) is subject to multiple parametric scattering - Signal / Idler ratio important ? - yes for quantum-noise measurements applications - no if one counts coincidences (it just lowers the overal coincidence counting rate)

“Horizontal” Parametric Scattering si p Fourier Plane f ’ xx yy Réciprocal space imaging

“Horizontal” Parametric Scattering si p i p xx yy s

Large Negative detuning Detuning close to zero Horizontal Parametric Scattering (c) Rayleigh Scattering OPO

What determines the angles ? Stereographic projection of the crystal Easy defect propagation along some directions The experimental configuration, with an excitation along a high symmetry direction allows probing these axis.

X ray diffraction (L. Largeau, LPN) z Characterization by X-ray diffraction No dislocation Mosaicity elastic deformation due to AlAs / GaAs mismatch correlation length 400 nm with underlying crystal symmetry => photonic disorder common effect in all microcavities !!

Quantum correlated signal and idler beams

pump idler signal Parametric conversion : Production of a photon pair, correlation in space and time +/-- Spectrum Analyzer Parametric oscillation: production of twin beams, correlated in intensity  (2) Twin beams from Optical Parametric Oscillators

Beam Noise Spectrum Analyzer is the amplitude quadrature Noise spectral density at the frequency Ω Amplitude fluctuations

X Y Vacuum Noise, Beam noise, Squeezing - Fluctuations limited by Heisenberg - Vaccum noise (shot-noise, standard quantum limit) - Beam noise for a coherent state - Squeezing : non-classical state, quantum optics applications

Quantum correlations measurement: noise measurements Spectrum Analyzer +/-- I1I1I1I1 I2I2I2I2 I 1 ± I 2 μTROPO Noise of the difference / Vacuum noise < 1 Quantum correlations !

S I pump E  xx yy Experiment. (a) Dispersion (b) Fourier Plane

Quantum correlations measurement: noise measurements Submitted to publication

Noise of the difference is below the Shot Noise

Detuning dependence

Summary / Outlook  Realization of a triply resonant OPO in a VCSEL-like structure :  -VTROPO  cw operation with low threshold  Operation up to at least 150 K (compare with 50 K)  Generation of photon pairs in various configurations  Generation of quantum correlated twin photon pairs  Electrical injection  Operating temperature Prospects