Initial goal: 70’s: Search for « macroscopic » quantum tunneling in magnetism Measurements on « narrow domain walls », ensemble of nanoparticles… Outline.

Slides:



Advertisements
Similar presentations
Unveiling the quantum critical point of an Ising chain Shiyan Li Fudan University Workshop on “Heavy Fermions and Quantum Phase Transitions” November 2012,
Advertisements

Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Low frequency noise in superconducting qubits
X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann.
Nanomagnetism: from atomic clusters to molecules and ions. First microwave experiments in the quantum regime. PhD students L. Thomas (Versailles, IBM),
. Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)
Dynamics of the nuclear spin bath in molecular nanomagnets: a test for decoherence Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics.
Dynamics and thermodynamics of quantum spins at low temperature Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics & Astronomy TRIUMF.
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp Nicolas Laflorencie Moshe Schechter University.
 From a single molecule to an ensemble of molecules at T ~0 : Both tunneling rate and decoherence increase  LZ probability: P LZ = 1 – exp[-  (  /ħ)
Quantum phase transitions in anisotropic dipolar magnets In collaboration with: Philip Stamp, Nicolas laflorencie Moshe Schechter University of British.
QUANTUM MECHANICS on the LARGE SCALE Banff-BIRS conference, April 2003 This conference to be followed by a workshop (see next slide) BANFF 1.
Entanglement and Quantum Correlations in Capacitively-coupled Junction Qubits Andrew Berkley, Huizhong Xu, Fred W. Strauch, Phil Johnson, Mark Gubrud,
PCE STAMP Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics QUANTUM GLASSES Talk given at 99 th Stat Mech meeting, Rutgers, 10.
QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS B. Barbara, W. Wernsdorfer, E. Bonet, L. Thomas (IBM), I. Chiorescu (FSU), R. Giraud (LPN) Laboratory Louis Néel,
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp, Nicolas Laflorencie Moshe Schechter University.
14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta 1 Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling.
Magnetism in Chemistry. General concepts There are three principal origins for the magnetic moment of a free atom: The spins of the electrons. Unpaired.
Low temperature universality in disordered solids In collaboration with: Philip Stamp (UBC) Alejandro Gaita-Arino (UBC) Moshe Schechter Gaita-Arino and.
Relaziation of an ultrahigh magnetic field on a nanoscale S. T. Chui Univ. of Delaware
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
Nuclear spin irreversible dynamics in crystals of magnetic molecules Alexander Burin Department of Chemistry, Tulane University.
Click to edit Master subtitle style CSIRO IT Progress towards the measurement of a small spin system using a nanoSQUID January 2006 S.K.H. Lam, W. Yang,
Submicron structures 26 th January 2004 msc Condensed Matter Physics Photolithography to ~1 μm Used for... Spin injection Flux line dynamics Josephson.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Theory of Optically Induced Magnetization Switching in GaAs:Mn J. Fernandez-Rossier, A. Núñez, M. Abolfath and A. H. MacDonald Department of Physics, University.
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Introduction to Single Molecular Magnet
Magnetic Data Storage. 5 nm Optimum Hard Disk Reading Head.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Magnetic properties of a frustrated nickel cluster with a butterfly structure Introduction Crystal structure Magnetic susceptibility High field magnetization.
2002 Agilent Technologies Europhysics Prize Lecture on Bernard Barbara, L. Néel Lab, Grenoble, France Jonathan R. Friedman, Amherst College, Amherst, MA,
Magnetic Material Engineering. Chapter 6: Applications in Medical and Biology Magnetic Material Engineering.
Dynamical decoupling in solids
Bose-Einstein Condensation of magnons in nanoparticles. Lawrence H. Bennett NSF Cyberinfrastructure for Materials Science August 3-5, 2006.
Experimental Approach to Macroscopic Quantum Tunneling of Magnetization in Single Domain Nanoparticles H. Mamiya, I. Nakatani, T. Furubayashi Nanomaterials.
Dynamics of the nuclear spin bath in molecular nanomagnets: a test for decoherence Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics.
Superconducting vortex avalanches D. Shantsev Åge A. F. Olsen, D. Denisov, V. Yurchenko, Y. M. Galperin, T. H. Johansen AMCS (COMPLEX) group Department.
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Quantum response in dissipative environments University of Tokyo S. Miyashita 5 Nov Linear Response 50 Equilibrium & NE response collaborators: Akira.
B. Barbara, R. Giraud, I. Chiorescu*, W. Wernsdorfer, Lab. Louis Néel, CNRS, Grenoble. Collaborations with other groups: D. Mailly (Marcoussis) D. Gatteschi.
Adiabatic Quantum Computation with Noisy Qubits M.H.S. Amin D-Wave Systems Inc., Vancouver, Canada.
Transport in three-dimensional magnetic field: examples from JT-60U and LHD Katsumi Ida and LHD experiment group and JT-60 group 14th IEA-RFP Workshop.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Single Molecule Magnets:
Single Molecular Magnets
Measuring Quantum Coherence in the Cooper-Pair Box
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
Slow Dynamics of Magnetic Nanoparticle Systems: Memory effects P. E. Jönsson, M. Sasaki and H. Takayama ISSP, Tokyo University Co-workers: H. Mamiya and.
On Decoherence in Solid-State Qubits Josephson charge qubits Classification of noise, relaxation/decoherence Josephson qubits as noise spectrometers Decoherence.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
NMR study of a mixed-metal molecular magnet Yutaka FUJII (University of Fukui) Contents  Introduction (Magnetic properties)  Experimental results  1.
Spin-lattice relaxation of individual lanthanide ions via quantum tunneling Fernando LUIS Orlando December 20 th 2010 Quantum Coherent Properties of Spins-III.
NMR Studies of nanoscale molecular magnets Y. Furukawa Y. Fujiyoshi S. Kawakami K. Kumagai F. Borsa P. Kogerler Hokkaido University (Japan) Pavia University.
Dynamics of novel molecular magnets V-ring and rare earth compounds Okayama Univ. H. Nojiri Introduction Magnetization step in V-rectangular ring Short.
A10 Designing spin-spin interactions in cold ion crystals
The University of Tokyo Seiji Miyashita
BCS THEORY BCS theory is the first microscopic theory of superconductivity since its discovery in It explains, The interaction of phonons and electrons.
Ferromagnetism and antiferromagnetism ferromagnetism (FM)
On the collapses and revivals in the Rabi Hamiltonian
Mario Palma.
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Magnetization processes in V15
Stephen Hill, Rachel Edwards Nuria Aliaga-Alcalde and George Christou
Quantum tunneling by Hyperfine interaction Origin of adiabatic change of the magnetization and the symmetry of the molecules Seiji Miyashita, Hans de.
Ferromagnetism and antiferromagnetism ferromagnetism (FM)
Hiroyuki Nojiri, Department of Physics, Okayama University
Presentation transcript:

Initial goal: 70’s: Search for « macroscopic » quantum tunneling in magnetism Measurements on « narrow domain walls », ensemble of nanoparticles… Outline (Mid 90’s to now) Single-particles measurements Classical dynamics, phonons bath… quantum effects ?... Tunneling of ensembles of large spins molecules (Mn 12 -ac). Slow quantum dynamics and transition to classical dynamics Some effects of the spin bath (tunneling and decoherence). Case of a large molecule with spins ½ (V 15 ) A gapped spin 1/2 molecule, phonons bath Extension to Rare-Earth ions Role of strong hyperfine coupling, electro-nuclear entanglement, From slow to fast quantum dynamics: towards a new type of spins qubits Nanomagnetism: From Classical to Quantum Nano-particles, atomic clusters, molecules, ions. _________

Collaborations (Louis Néel lab) S. Bertaina (Post-doc, LLN) R. Giraud (LPN), I. Chiorescu (FSU), E. Bonet (LLN), W. Wernsdorfer (LLN), L. Thomas (IBM) Other Collaborations D. Mailly (LPN), A. Benoit (CRTBT) S. Gambarelli (DRF-Grenoble), A. Stepanov (Marseille) B. Malkin, M. Vanyunin (Kazan) H. Pascard (Palaiseau), A.M. Tkachuk (St Petersbourg), H. Suzuki (Tsukuba), D. Gatteschi (Florence), G. Cristou (FSU), A. Müller (Bielefeld) Tupitsyn, Stamp and Prokof’ev

Micro-SQUID magnetometry M - M H ~ H sw I ~ I c  M Large dB/dt Fabricated by electron beam lithography (D. Mailly, LPM, Paris) Sensivity ~  0, emu, 10 2  B Superconducting Normal W. Wernsdorfer, K. Hasselbach, D. Mailly, B. Barbara, A. Benoit, L.Thomas, JMMM, 145, 33 (1995).

Particles from micrometers to 100 nanometers Obtained by: Lithography, Electro-deposition Measurements: Micro-Squids 100 nm 50 nm x 1  m 1  m x 2  m Small ellipseLarge ellipseNanowire MULTI – DOMAIN: nucleation, pinning, propagation and annihilation of domain walls SINGLE - DOMAIN Single Nucleation Curling

Fig. 25 Evidence of the « curling mode » (nanowires) Frei, Shtrikman, D. Treves et A. Aharoni, 1957

Evidence of the 2-D Stoner-Wohlfarth astroid Phil. Trans. R. Soc.,240, 599 (1948) 5 nm FeS, filled nanotuble N. Demoncy, H. Pascard, A. Loiseau W. Wernsforfer, E. Bonet, B. Barbara, N. Demoncy, H. Pascard, A. Loiseau, JAP, 81, 5543 (1997).

Observation of 3D Stoner-Wohlfarth astroid and origin of the magnetic anisotropy Josephson junctions Co clusters (3 nm) Interface anisotropy M. Jamet et al, J. Magn.Magn.Mat. 237, (2001); PRL, 86, 10 (2001) 281. clusters Co (20 nm) and BaFeO (10 nm) Shape anistropy + Surface anisotropy E. Bonet, W. Wernsdorfer, B. Barbara, A. Benoit, D. Mailly, A. Thiaville, PRL, 83, 20, 4188 (1999).

Temperature dependence of the switching fields of a 3nm Co cluster ∆t ≈ 1 s

Effect of a transverse field close to the anisotropy field: Telegraph noise 10 6 spins - W. Wernsdorfer, E. Bonet, K. Hasselbach, A. Benoit, B. Barbara, N. Demoncy, A. Loiseau, H. Pascard, D. Mailly, Phys. R.ev. Lett., 78, 1791 (1997) - B. Barbara et al, Proc. Mat. Res. Symp. 475, 265 (1997); Lecture Notes in Physics (2001) Single phonons shots Reversal up, down, up…

Néel-Brown model M ~ (M in - M eq )e -t/   eq t  0 e -E0(1-H/H 0 ) 3/2 /kT H MP ~ H 0 [1 – (kT/E 0 ) 2/3.(ln(    /  0 v H )) 2/3 ] H(t)    ~  (2H 0 /3)(kT/E 0 ) 2/3.(ln(  0 T/ v H )) -1/3 - J. Kurkijärvi, PRB 6, 832 (1972) - L. Gunther and B. Barbara, PRB 49, 3926 (1994) H M H sw Two types of measurements

Switching field Measurements of the 20 nm Co particle One switch

20nm Co particle embeeded in Carbone -W. Wernsdorfer, E. Bonet, K. Hasselbach, A. Benoit, B. Barbara, N. Demoncy, A. Loiseau, H. Pascard, D. Mailly, Phys. Rev. Lett., 78, 1791 (1997). - B. Barbara, W. Wernsdorfer, E. Bonet, K. Hasselbach, D. Mailly, A. Benoit, M.P. Pileni, Proc. Mat. Res. Symp. 475, 265 (1997). Most probable switching field Exponential relaxation and Arrhenius law E 0 ≈ K ≈ (20 nm) 3  0 ~ s D. MaillyN. Demoncy, A. Loiseau, H. Pascard

Hysteresis measurements of ferromagnetic nanoparticles made by the micro-Squid technique (last decade) Obtained by: Lithography, Electro-deposition, Arc discharge, LECBD 100 nm 50 nm x 1  m1  m x 2  m 20 nm

Waiting time measurements Non-exponential single particle relaxation: Low T:  < 1 Nucleation-creep Propagation (surface) High T:  > 1 Nucleation-coalescence

Macroscopic Quantum Tunneling of 10 5  B ? Easy axis Barium ferrite Insulating ferri. nanoparticle (10 nm) 3D - astroid W. Wernsdorfer, E. Bonet, K. Hasselbach, A. Benoit, D. Mailly, O. Kubo, H. Nakano, and B. Barbara, PRL, 79, 4014, (1997)

T c =0.31 K T eff T E. Chudnovsky, PRB 54, 389 (1996) Quantum description W. Wernsdorfer, E. Bonet, K. Hasselbach, A. Benoit, D. Mailly, O. Kubo, H. Nakano, and B. Barbara, PRL, 79, 4014, (1997) H y =250 mT H y =180 mT H y = 0 mT Bigger particle

Nanometer scale NanoparticleCluster 20 nm3 nm1 nm2 nm Magnetic ProteinSingle Molecule 50S =

Single Molecule Magnets The molecules are regularly arranged in the crystal

Tunneling of Magnetization in Mn 12 -ac, S=10 Thomas et al Nature (1996); Friedman et al, PRL (1996). Barbara et al (ICM’94) NATO ASI workshop QTM’94 Chichilianne and Grenoble (B.Barbara, L.Gunther, N.Garcia, A. Leggett). ……. …. Slow quantum dynamics of molecule magnets spins …. Resonances at H n = nD/g  B = 450.n mT Magnetic relaxation

Mn(IV) S=3/2 Mn(III) S=2 Total Spin =10 Mn12acetate

fig2 Magnetization of a single crystal of Mn12-ac Tupitsyn and Barbara, review, Wiley-VCH (2001) D H =

Barrier in zero field (symmetrical) H= - DS z 2 - BS z 4 - E(S S - 2 ) - C(S S - 4 ) H // -M New resonances at g  B H n = nD (B=0) Thermally activated tunneling Landau-Zener transition at avoided level crossing (single molecule) Tunneling probability: P=1 – exp[-  (  /ħ) 2 /  c] c = dH/dt  Coexistence of tunneling and hysteresis

 From a single molecule to an ensemble of molecules at T ~0 : Both tunneling rate and decoherence increase  LZ probability: P LZ = 1 – exp[-  (  /ħ) 2 /  c] ~  2 /c Spin-bath (Prokofiev and Stamp): P SB ~ (  2 /  0 )e -│  │/  0.n(E D ) >> P LZ  0 = hyperfine energy = tunnel window Large spins Mesoscopic tunneling (slow) Nuclear spins Observation possible Strong decoherence. H= - DS z 2 - BS z 4 - E(S S - 2 ) - C(S S - 4 ) - g  B S z H z